Alkalinization
Analgesics..
Antiandrogens..
Bromhexine
Budesonide
Cannabidiol
Colchicine
Conv. Plasma
Curcumin
Ensovibep
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Iota-carragee..
Ivermectin
Lactoferrin
Lifestyle..
Melatonin
Metformin
Molnupiravir
Monoclonals..
Nigella Sativa
Nitazoxanide
Nitric Oxide
Paxlovid
Peg.. Lambda
Povidone-Iod..
Quercetin
Remdesivir
Vitamins..
Zinc

Other
Feedback
Home
Home   COVID-19 treatment studies for Ivermectin  COVID-19 treatment studies for Ivermectin  C19 studies: Ivermectin  Ivermectin   Select treatmentSelect treatmentTreatmentsTreatments
Alkalinization Meta Lactoferrin Meta
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta Molnupiravir Meta
Cannabidiol Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta Nitric Oxide Meta
Ensovibep Meta Paxlovid Meta
Famotidine Meta Peg.. Lambda Meta
Favipiravir Meta Povidone-Iod.. Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Iota-carragee.. Meta
Ivermectin Meta Zinc Meta

Other Treatments Global Adoption
All Studies   Meta Analysis   Recent:  
Ivermectin also inhibits the replication of bovine respiratory viruses (BRSV, BPIV-3, BoHV-1, BCoV and BVDV) in vitro
Yesilbag et al., Virus Research, doi:10.1016/j.virusres.2021.198384 (In Vitro)
Yesilbag et al., Ivermectin also inhibits the replication of bovine respiratory viruses (BRSV, BPIV-3, BoHV-1, BCoV and BVDV).., Virus Research, doi:10.1016/j.virusres.2021.198384 (In Vitro)
Mar 2021   Source   PDF  
  Twitter
  Facebook
Share
  All Studies   Meta
In Vitro study showing that ivermectin can inhibit infection of bovine respiratory disease viral agents BCoV, BPIV-3, BVDV, BRSV and BoHV-1 at the concentrations of 2.5 and 5 μM and in a dose-dependent manner.
15 In Vitro studies support the efficacy of ivermectin [Boschi, Caly, Croci, De Forni, Delandre, Jeffreys, Jitobaom, Jitobaom (B), Li, Liu, Mody, Mountain Valley MD, Segatori, Surnar, Yesilbag].
Yesilbag et al., 10 Mar 2021, peer-reviewed, 3 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
All Studies   Meta Analysis   Submit Updates or Corrections
This PaperIvermectinAll
Abstract: Virus Research 297 (2021) 198384 Contents lists available at ScienceDirect Virus Research journal homepage: www.elsevier.com/locate/virusres Ivermectin also inhibits the replication of bovine respiratory viruses (BRSV, BPIV-3, BoHV-1, BCoV and BVDV) in vitro Kadir Yesilbag *, Eda Baldan Toker, Ozer Ates Department of Virology, Bursa Uludag University, Faculty of Veterinary Medicine, 16059, Bursa, Turkey A R T I C L E I N F O A B S T R A C T Keywords: Ivermectin Antiviral efficiency In vitro testing Bovine coronavirus Bovine viral diarrhea virus Bovine respiratory syncytial virus Bovine parainfluenza type 3 virus Bovine herpesvirus type 1 Bovine respiratory disease (BRD) complex is an important viral infection that causes huge economic losses in cattle herds worldwide. However, there is no directly effective antiviral drug application against respiratory viral pathogens; generally, the metaphylactic antibacterial drug applications are used for BRD. Ivermectin (IVM) is currently used as a broad-spectrum anti-parasitic agent both for veterinary and human medicine on some oc­ casions. Moreover, since it is identified as an inhibitor for importin α/β-mediated nuclear localization signal (NLS), IVM is also reported to have antiviral potential against several RNA and DNA viruses. Since therapeutic use of IVM in COVID-19 cases has recently been postulated, the potential antiviral activity of IVM against bovine respiratory viruses including BRSV, BPIV-3, BoHV-1, BCoV and BVDV are evaluated in this study. For these purposes, virus titration assay was used to evaluate titers in viral harvest from infected cells treated with noncytotoxic IVM concentrations (1, 2.5 and 5 μM) and compared to titers from non-treated infected cells. This study indicated that IVM inhibits the replication of BCoV, BVDV, BRSV, BPIV-3 and BoHV-1 in a dose-dependent manner in vitro as well as number of extracellular infectious virions. In addition, it was demonstrated that IVM has no clear effect on the attachment and penetration steps of the replication of the studied viruses. Finally, this study shows for the first time that IVM can inhibit infection of BRD-related viral agents namely BCoV, BPIV-3, BVDV, BRSV and BoHV-1 at the concentrations of 2.5 and 5 μM. Consequently, IVM, which is licensed for antiparasitic indications, also deserves to be evaluated as a broad-spectrum antiviral in BRD cases caused by viral pathogens.
Loading..
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit