Conv. Plasma
Nigella Sativa

All ivermectin studies
Meta analysis
study COVID-19 treatment researchIvermectinIvermectin (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral gene Orf9c on human pluripotent stem cell-derived cardiomyocytes

Liu et al., Stem Cell Reports, doi:10.1016/j.stemcr.2022.01.014 (date from preprint)
Jan 2022  
  Source   PDF   All Studies   Meta AnalysisMeta
Ivermectin for COVID-19
4th treatment shown to reduce risk in August 2020
*, now known with p < 0.00000000001 from 100 studies, recognized in 22 countries.
No treatment is 100% effective. Protocols combine complementary and synergistic treatments. * >10% efficacy in meta analysis with ≥3 clinical studies.
3,800+ studies for 60+ treatments.
In Vitro study showing that ivermectin and meclizine treatment may minimize SARS-CoV-2-induced cardiac damage by reducing Orf9c-induced apoptosis and dysfunction. Using human pluripotent stem cell-derived cardiomyocytes, authors show that the SARS-CoV-2 gene Orf9c may play a key role in the detrimental effects of the virus on cardiomyocytes by reducing ATP levels.
Ivermectin, better known for antiparasitic activity, is a broad spectrum antiviral with activity against many viruses including H7N7 Götz, Dengue Tay, Wagstaff, HIV-1 Wagstaff, Simian virus 40 Wagstaff (B), Zika Barrows, Yang, West Nile Yang, Yellow Fever Mastrangelo, Varghese, Japanese encephalitis Mastrangelo, Chikungunya Varghese, Semliki Forest virus Varghese, Human papillomavirus Li, Epstein-Barr Li, BK Polyomavirus Bennett, and Sindbis virus Varghese.
Ivermectin inhibits importin-α/β-dependent nuclear import of viral proteins Götz, Kosyna, Wagstaff, Wagstaff (B), inhibits SARS-CoV-2 3CLpro Mody, shows spike-ACE2 disruption at 1nM with microfluidic diffusional sizing Fauquet, binds to glycan sites on the SARS-CoV-2 spike protein preventing interaction with blood and epithelial cells and inhibiting hemagglutination Boschi, Scheim, exhibits dose-dependent inhibition of lung injury Abd-Elmawla, Ma, may inhibit SARS-CoV-2 induced formation of fibrin clots resistant to degradation Vottero, may be beneficial for COVID-19 ARDS by blocking GSDMD and NET formation Liu (C), shows protection against inflammation, cytokine storm, and mortality in an LPS mouse model sharing key pathological features of severe COVID-19 DiNicolantonio, Zhang, may be beneficial in severe COVID-19 by binding IGF1 to inhibit the promotion of inflammation, fibrosis, and cell proliferation that leads to lung damage Zhao, may minimize SARS-CoV-2 induced cardiac damage Liu, Liu (B), increases Bifidobacterium which plays a key role in the immune system Hazan, has immunomodulatory Munson and anti-inflammatory DiNicolantonio (B), Yan properties, and has an extensive and very positive safety profile Descotes.
Liu et al., 23 Jan 2022, peer-reviewed, 11 authors. Contact: (corresponding author).
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperIvermectinAll
SARS-CoV-2 Viral Genes Compromise Survival and Functions of Human Pluripotent Stem Cell-derived Cardiomyocytes via Reducing Cellular ATP Level
Juli Liu, Yucheng Zhang, Shiyong Wu, Lei Han, Cheng Wang, Sheng Liu, Ed Simpson, Ying Liu, Yue Wang, Weinian Shou, Yunlong Liu, Michael Rubart-Von Der Lohe, Jun Wan, Lei Yang
Cardiac manifestations are commonly observed in COVID-19 patients and prominently contributed to overall mortality. Human myocardium could be infected by SARS-CoV-2, and human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are susceptible to SARS-CoV-2 infection. However, molecular mechanisms of SARS-CoV-2 gene-induced injury and dysfunction of human CMs remain elusive. Here, we find overexpression of three SARS-CoV-2 coding genes, Nsp6, Nsp8 and M, could globally compromise transcriptome of hPSC-CMs. Integrated transcriptomic analyses of hPSC-CMs infected by SARS-CoV-2 with hPSC-CMs of Nsp6, Nsp8 or M overexpression identified concordantly activated genes enriched into apoptosis and immune/inflammation responses, whereas reduced genes related to heart contraction and functions. Further, Nsp6, Nsp8 or M overexpression induce prominent apoptosis and electrical dysfunctions of hPSC-CMs. Global interactome analysis find Nsp6, Nsp8 and M all interact with ATPase subunits, leading to significantly reduced cellular ATP level of hPSC-CMs. Finally, we find two FDA-approved drugs, ivermectin and meclizine, could enhance the ATP level, and ameliorate cell death and dysfunctions of hPSC-CMs overexpressing Nsp6, Nsp8 or M. Overall, we uncover the global detrimental impacts of SARS-CoV-2 genes Nsp6, Nsp8 and M on the whole transcriptome and interactome of hPSC-CMs, define the crucial role of ATP level reduced by SARS-CoV-2 genes in CM death and functional abnormalities, and explore the potentially pharmaceutical approaches to ameliorate SARS-CoV-2 genes-induced CM injury and abnormalities.
Author contributions JL and LY initiated and designed studies. JL performed all experiments and data analyses. SW, LH, CW, ES, YW and YLL assisted in whole RNA-seq. YZ and JW assisted in bioinformatics. YL, WS and ML supported calcium handling and MEA experiments and data analyses. JL, JW, ML and LY wrote the manuscript. Declaration of interest The authors declare no competing interests. Supplementary Figure 1 Supplemental Information acquisition a minimum AGC of 2e3 and charge exclusion of 1, and ≥7 were used.
Bailey, Dmytrenko, Greenberg, SARS-CoV-2 Infects Human Engineered Heart Tissues and Models COVID-19 Myocarditis, J Am Coll Cardiol Basic Trans Science
Bailey, Dmytrenko, Greenberg, SARS-CoV-2 Infects Human Engineered Heart Tissues and Models COVID-19 Myocarditis, J Am Coll Cardiol Basic Transl Science
Banerjee, Blanco, Bruce, SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses, Cell
Bers, Calcium cycling and signaling in cardiac myocytes, Annu Rev Physiol
Bers, Guo, Calcium signaling in cardiac ventricular myocytes, Ann N Y Acad Sci
Bojkova, Wagner, Shumliakivska, SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes, Cardiovasc Res
Brinton, Replication cycle and molecular biology of the West Nile virus, Viruses
Caly, Druce, Catton, Jans, Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Res
Clerkin, Fried, Raikhelkar, COVID-19 and Cardiovascular Disease, Circulation
Dhakal, Sweitzer, Indik, Acharya, William, SARS-CoV-2 Infection and Cardiovascular Disease: COVID-19 Heart, Heart Lung Circ
Dobin, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, doi:10.1093/bioinformatics/bts635
Eguchi, Shimizu, Tsujimoto, Intracellular ATP levels determine cell death fate by apoptosis or necrosis, Cancer Res
Fearnley, Roderick, Bootman, Calcium signaling in cardiac myocytes, Cold Spring Harb Perspect Biol
Gohil, Sheth, Nilsson, Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis, Nat Biotechnol
Gordon, Jang, Bouhaddou, A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature
Guo, Fan, Chen, Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19), JAMA Cardiol
Hikmet, Mear, Edvinsson, Micke, Uhlen et al., The protein expression profile of ACE2 in human tissues, Mol Syst Biol
Hoffmann, Kleine-Weber, Schroeder, SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell
Huang, Wang, Li, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet
Knight, Kotecha, Razvi, COVID-19: Myocardial Injury in Survivors, Circulation
Lian, Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions, Nat Protoc, doi:10.1038/nprot.2012.150
Lian, Zhang, Azarin, Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions, Nat Protoc
Liao, Smyth, Shi, The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads, Nucleic Acids Res, doi:10.1093/nar/gkz114
Lin, High-purity enrichment of functional cardiovascular cells from human iPS cells, Cardiovasc Res, doi:10.1093/cvr/cvs185
Liu, Li, Lin, Sheng, Yang, HBL1 Is a Human Long Noncoding RNA that Modulates Cardiomyocyte Development from Pluripotent Stem Cells by Counteracting MIR1, Dev Cell
Liu, Liu, Gao, Genome-wide studies reveal the essential and opposite roles of ARID1A in controlling human cardiogenesis and neurogenesis from pluripotent stem cells, Genome Biol
Lu, Overexpression of microRNA-1 promotes cardiomyocyte commitment from human cardiovascular progenitors via suppressing WNT and FGF signaling pathways, J Mol Cell Cardiol, doi:10.1016/j.yjmcc.2013.07.019
Ludwig, Bergendahl, Levenstein, Yu, Probasco et al., Feeder-independent culture of human embryonic stem cells, Nat Methods
Ludwig, Derivation of human embryonic stem cells in defined conditions, Nat Biotechnol, doi:10.1038/nbt1177
Ludwig, Feeder-independent culture of human embryonic stem cells, Nat Methods, doi:10.1038/nmeth902
Ludwig, Levenstein, Jones, Derivation of human embryonic stem cells in defined conditions, Nat Biotechnol
Marchiano, Hsiang, Khanna, SARS-CoV-2 Infects Human Pluripotent Stem Cell-Derived Cardiomyocytes, Impairing Electrical and Mechanical Function, Stem Cell Reports
Medigeshi, Hirsch, Streblow, Nikolich-Zugich, Nelson, West Nile virus entry requires cholesterol-rich membrane microdomains and is independent of alphavbeta3 integrin, J Virol
Miyoshi, Oubrahim, Chock, Stadtman, Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis, Proc Natl Acad Sci U S A
Nagai, Satomi, Abiru, Antihypertrophic Effects of Small Molecules that Maintain Mitochondrial ATP Levels Under Hypoxia, EBioMedicine
Nishiga, Wang, Han, Lewis, Wu, COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives, Nat Rev Cardiol
Peltier, Latham, Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues, RNA, doi:10.1261/rna.939908
Perez-Bermejo, Kang, Rockwood, SARS-CoV-2 infection of human iPSC-derived cardiac cells predicts novel cytopathic features in hearts of COVID-19 patients, bioRxiv
Rajter, Sherman, Fatteh, Vogel, Sacks et al., Use of Ivermectin Is Associated With Lower Mortality in Hospitalized Patients With Coronavirus Disease, Chest
Robinson, Mccarthy, Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, doi:10.1093/bioinformatics/btp616
Shang, Wan, Luo, Cell entry mechanisms of SARS-CoV-2, Proc Natl Acad Sci U S A
Sharma, Garcia, Wang, Human iPSC-Derived Cardiomyocytes Are Susceptible to SARS-CoV-2 Infection, Cell Rep Med
Shi, Qin, Shen, Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China, JAMA Cardiol
Shi, Qin, Yang, Coronavirus Disease 2019 (COVID-19) and Cardiac Injury-Reply, JAMA Cardiol
Tatsumi, Shiraishi, Intracellular ATP is required for mitochondrial apoptotic pathways in isolated hypoxic rat cardiac myocytes, Cardiovasc Res
Tohyama, Hattori, Sano, Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes, Cell Stem Cell
Tsujimoto, Apoptosis and necrosis: intracellular ATP level as a determinant for cell death modes, Cell Death Differ
Yang, Han, Nilsson-Payant, A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids, Cell Stem Cell
Yang, Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population, Nature, doi:10.1038/nature06894
Yang, Soonpaa, Adler, Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population, Nature
Zang, Castro, Mccune, TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes, Sci Immunol
Zhou, Yang, Wang, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature
Zhu, Zhang, A Novel Coronavirus from Patients with Pneumonia in China, 2019, N Engl J Med
Zhuo, Gorgun, Englander, Augmentation of glycolytic metabolism by meclizine is indispensable for protection of dorsal root ganglion neurons from hypoxia-induced mitochondrial compromise, Free Radic Biol Med
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop