Comparative Docking Studies on Curcumin with COVID-19 Proteins
Renuka Suravajhala, Abhinav Parashar, Babita Malik, Viswanathan Arun Nagaraj, Govindarajan Padmanaban, P B Kavi Kishor, Rathnagiri Polavarapu, Prashanth Suravajhala
doi:10.20944/preprints202005.0439.v3
Highlights 1. Our findings confirm the role of Q163 aminoacid site for potential tethered site or target which is in agreement with ivermectin, the best possible and known drug. 2. We have employed a rigorous strategy in screening the docking complexes from a majority of hypothetical genes or orphan open reading frames, structural and non-structural proteins. 3. We believe that the findings presented in our paper will appeal to researchers working on COVID-19, particularly those interested to characteristically screen docking complexes.
Author contributions: GP, PBK and RP ideated the project. RS and AP jointly analysed the structures and modelled the docking complexes. PS performeddid the protein interaction analyses. AP and RS wrote the first draft with PS, PBK, BM and RP. GP, PBK, PS, VAN and RP proofread the manuscript.
Competing interests: None
References
Balasco, Esposito, De Simone, Vitagliano, Role of loops connecting secondary structure elements in the stabilization of proteins isolated from thermophilic organisms, Protein Sci,
doi:10.1002/pro.2279
Bosch, Van Der Zee, De Haan, Rottier, The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex, J. Virol,
doi:10.1128/jvi.77.16.8801-8811.2003
Bouvet, Lugari, Posthuma, Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes, J Biol Chem,
doi:10.1074/jbc.M114.577353
Chen, Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex, PLOS Pathog,
doi:10.1371/journal.ppat.1002294
Chen, Liu, Guo, Emerging coronaviruses: Genome structure, replication, and pathogenesis, Journal of Medical Virology,
doi:10.1002/jmv.25681
Delano, The PyMOL Molecular Graphics System; DeLano Scientific
Dende, Meena, Nagarajan, Nagaraj, Panda et al., Nanocurcumin is superior to native curcumin in preventing degenerative changes in Experimental Cerebral Malaria, Scientific reports,
doi:10.1038/s41598-017-10672-9
Dolati, Ahmadi, Aghebti-Maleki, Nanocurcumin is a potential novel therapy for multiple sclerosis by influencing inflammatory mediators, Pharmacol Rep,
doi:10.1016/j.pharep.2018.05.008
Hesari, Ghasemi, Salarinia, Biglari, Tabar Molla Hassan et al., Effects of curcumin on NF-κB, AP-1, and Wnt/β-catenin signaling pathway in hepatitis B virus infection, Journal of cellular biochemistry,
doi:10.1002/jcb.26829
Hilgenfeld, Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites, Acta Pharm. Sin. B,
doi:10.1111/febs.12936Kang
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell,
doi:10.1016/j.cell.2020.02.052
Kang, Yang, Hong, Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites
Mcbride, Van Zyl, Fielding, The coronavirus nucleocapsid is a multifunctional protein, Viruses,
doi:10.3390/v6082991
Morris, AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Comput. Chem,
doi:10.1002/jcc.21256
N M O'boyle, Banck, James, Morley, Vandermeersch et al., Open Babel: An open chemical toolbox, J. Cheminf,
doi:10.1186/1758-2946-3-33
Nelson, Dahlin, Bisson, Graham, Pauli et al., The essential medicinal chemistry of curcumin: miniperspective, Journal of medicinal chemistry,
doi:10.1021/acs.jmedchem.6b00975
Pettersen, Goddard, Huang, Couch, Greenblatt et al., UCSF Chimera -A Visualization System for Exploratory Research and Analysis, J. Comput. Chem
Prasad, Tyagi, Aggarwal, Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice, Cancer Res. Treat. Off. J. Korean Cancer Assoc,
doi:10.4143/crt.2014.46.1.2
Rossi, Sanga, Barton, Potential harmful effects of discontinuing ACE-inhibitors and ARBs in COVID-19 patients, Elife,
doi:10.7554/eLife.57278
Sampangi-Ramaiah, Vishwakarma, Shaanker, Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease, Current Science
Soleimani, Sahebkar, Hosseinzadeh, Turmeric (Curcuma longa) and its major constituent (Curcumin) as nontoxic and safe substances: Review, Phytother. Res,
doi:10.1002/ptr.6054
Su, Lou, Sun, Zhai, Yang et al., Dodecamer structure of severe acute respiratory syndrome coronavirus nonstructural protein nsp10, Journal of Virology,
doi:10.1128/JVI.00483-06
Vathsala, Dende, Nagaraj, Bhattacharya, Das et al., Curcuminarteether combination therapy of Plasmodium berghei-infected mice prevents recrudescence through immunomodulation, PLoS One,
doi:10.1371/journal.pone.0029442
Walls, Park, Tortorici, Wall, Mcguire et al., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell,
doi:10.1016/j.cell.2020.02.058
Walls, Tortorici, Snijder, Xiong, Bosch et al., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion, Proceedings of the National Academy of Sciences,
doi:10.1073/pnas.1708727114
Xia, Ye, Shi, Zhou, Hua, Curcumin improves diabetes mellitus-associated cerebral infarction by increasing the expression of GLUT1 and GLUT3, Molecular medicine reports,
doi:10.3892/mmr.2017.8085
Zhou, Liu, Wang, Liu, Li et al., The nucleocapsid protein of severe acute respiratory syndrome coronavirus inhibits cell cytokinesis and proliferation by interacting with translation elongation factor 1alpha, Journal of Virology,
doi:10.1128/JVI.00133-08
{ 'indexed': {'date-parts': [[2023, 2, 5]], 'date-time': '2023-02-05T05:24:08Z', 'timestamp': 1675574648871},
'posted': {'date-parts': [[2020, 6, 7]]},
'group-title': 'LIFE SCIENCES',
'reference-count': 0,
'publisher': 'MDPI AG',
'license': [ { 'start': { 'date-parts': [[2020, 6, 7]],
'date-time': '2020-06-07T00:00:00Z',
'timestamp': 1591488000000},
'content-version': 'unspecified',
'delay-in-days': 0,
'URL': 'http://creativecommons.org/licenses/by/4.0'}],
'content-domain': {'domain': [], 'crossmark-restriction': False},
'accepted': {'date-parts': [[2020, 6, 5]]},
'abstract': '<jats:p>Corona virus disease 2019 (COVID-19) is caused by a Severe Acute Respiratory '
'Syndrome-Coronavirus 2 (SARS-CoV-2), which is a positive strand RNA virus. The SARS-CoV-2 '
'genome and its association to SAR-CoV-1 vary from ca. 66% to 96% depending on the type of '
'betacoronavirdeae family members. With several drugs, viz. chloroquine, hydroxychloroquine, '
'ivermectin, artemisinin, remdesivir, azithromycin considered for clinical trials, there has '
'been an inherent need to find distinctive antiviral mechanisms of these drugs. Curcumin, a '
'natural bioactive molecule has been shown to have a therapeutic potential for various '
'diseases, but its effect on COVID-19 has not been explored. In this study, we show the '
'binding potential of curcumin targeted to a variety of SARS-CoV-2 proteins, viz. spike '
'glycoproteins (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane '
'glycoprotein (PDB ID: 6M17) along with nsp10 (PDB ID: 6W4H) and RNA dependent RNA polymerase '
'(PDB ID: 6M71) structures. Our results indicate that curcumin has high binding affinity '
'towards nucleocapsid and nsp 10 proteins with potential antiviral activity.</jats:p>',
'DOI': '10.20944/preprints202005.0439.v3',
'type': 'posted-content',
'created': {'date-parts': [[2020, 6, 8]], 'date-time': '2020-06-08T15:31:31Z', 'timestamp': 1591630291000},
'source': 'Crossref',
'is-referenced-by-count': 4,
'title': 'Comparative Docking Studies on Curcumin with COVID-19 Proteins',
'prefix': '10.20944',
'author': [ {'given': 'Renuka', 'family': 'Suravajhala', 'sequence': 'first', 'affiliation': []},
{'given': 'Abhinav', 'family': 'Parashar', 'sequence': 'additional', 'affiliation': []},
{'given': 'Babita', 'family': 'Malik', 'sequence': 'additional', 'affiliation': []},
{'given': 'Viswanathan Arun', 'family': 'Nagaraj', 'sequence': 'additional', 'affiliation': []},
{'given': 'Govindarajan', 'family': 'Padmanaban', 'sequence': 'additional', 'affiliation': []},
{'given': 'PB', 'family': 'Kavi Kishor', 'sequence': 'additional', 'affiliation': []},
{'given': 'Rathnagiri', 'family': 'Polavarapu', 'sequence': 'additional', 'affiliation': []},
{ 'ORCID': 'http://orcid.org/0000-0002-8535-278X',
'authenticated-orcid': False,
'given': 'Prashanth',
'family': 'Suravajhala',
'sequence': 'additional',
'affiliation': []}],
'member': '1968',
'container-title': [],
'original-title': [],
'deposited': { 'date-parts': [[2020, 6, 8]],
'date-time': '2020-06-08T15:44:10Z',
'timestamp': 1591631050000},
'score': 1,
'resource': {'primary': {'URL': 'https://www.preprints.org/manuscript/202005.0439/v3'}},
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2020, 6, 7]]},
'references-count': 0,
'URL': 'http://dx.doi.org/10.20944/preprints202005.0439.v3',
'relation': { 'is-version-of': [ { 'id-type': 'doi',
'id': '10.20944/preprints202005.0439.v1',
'asserted-by': 'subject'},
{ 'id-type': 'doi',
'id': '10.20944/preprints202005.0439.v2',
'asserted-by': 'subject'}],
'has-version': [ { 'id-type': 'doi',
'id': '10.20944/preprints202005.0439.v1',
'asserted-by': 'object'},
{ 'id-type': 'doi',
'id': '10.20944/preprints202005.0439.v2',
'asserted-by': 'object'}]},
'published': {'date-parts': [[2020, 6, 7]]},
'subtype': 'preprint'}