Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19ivm.org COVID-19 treatment researchIvermectinIvermectin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Insights from a computational analysis of the SARS-CoV-2 Omicron variant: Host–pathogen interaction, pathogenicity, and possible drug therapeutics

Parvez et al., Immunity, Inflammation and Disease, doi:10.1002/iid3.639 (date from preprint)
Jan 2022  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Ivermectin for COVID-19
4th treatment shown to reduce risk in August 2020, now with p < 0.00000000001 from 105 studies, recognized in 23 countries.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19ivm.org
In Silico analysis of the omicron variant and 10 treatments reported effective for previous variants, predicting that all will be effective for omicron, with ivermectin showing the best results.
70 preclinical studies support the efficacy of ivermectin for COVID-19:
Ivermectin, better known for antiparasitic activity, is a broad spectrum antiviral with activity against many viruses including H7N768, Dengue34,69,70, HIV-170, Simian virus 4071, Zika34,72,73, West Nile73, Yellow Fever74,75, Japanese encephalitis74, Chikungunya75, Semliki Forest virus75, Human papillomavirus54, Epstein-Barr54, BK Polyomavirus76, and Sindbis virus75.
Ivermectin inhibits importin-α/β-dependent nuclear import of viral proteins68,70,71,77, shows spike-ACE2 disruption at 1nM with microfluidic diffusional sizing35, binds to glycan sites on the SARS-CoV-2 spike protein preventing interaction with blood and epithelial cells and inhibiting hemagglutination38,78, shows dose-dependent inhibition of wildtype and omicron variants33, exhibits dose-dependent inhibition of lung injury58,63, may inhibit SARS-CoV-2 via IMPase inhibition34, may inhibit SARS-CoV-2 induced formation of fibrin clots resistant to degradation7, inhibits SARS-CoV-2 3CLpro51, may inhibit SARS-CoV-2 RdRp activity26, may minimize viral myocarditis by inhibiting NF-κB/p65-mediated inflammation in macrophages57, may be beneficial for COVID-19 ARDS by blocking GSDMD and NET formation79, may interfere with SARS-CoV-2's immune evasion via ORF8 binding2, may inhibit SARS-CoV-2 by disrupting CD147 interaction80-83, shows protection against inflammation, cytokine storm, and mortality in an LPS mouse model sharing key pathological features of severe COVID-1956,84, may be beneficial in severe COVID-19 by binding IGF1 to inhibit the promotion of inflammation, fibrosis, and cell proliferation that leads to lung damage6, may minimize SARS-CoV-2 induced cardiac damage37,45, increases Bifidobacteria which play a key role in the immune system85, has immunomodulatory48 and anti-inflammatory67,86 properties, and has an extensive and very positive safety profile87.
Parvez et al., 20 Jan 2022, preprint, 7 authors. Contact: ohtsuki.gen.7w@kyoto-u.ac.jp, jakir-gen@sust.edu.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperIvermectinAll
Insights from a computational analysis of the SARS‐CoV‐2 Omicron variant: Host–pathogen interaction, pathogenicity, and possible drug therapeutics
Md Sorwer Alam Parvez, Manash Kumar Saha, Md D Ibrahim, Yusha Araf, Md. Taufiqul Islam, Gen Ohtsuki, Mohammad Jakir Hosen
Immunity, Inflammation and Disease, doi:10.1002/iid3.639
Introduction: Prominently accountable for the upsurge of COVID-19 cases as the world attempts to recover from the previous two waves, Omicron has further threatened the conventional therapeutic approaches. The lack of extensive research regarding Omicron has raised the need to establish correlations to understand this variant by structural comparisons. Here, we evaluate, correlate, and compare its genomic sequences through an immunoinformatic approach to understand its epidemiological characteristics and responses to existing drugs. Methods: We reconstructed the phylogenetic tree and compared the mutational spectrum. We analyzed the mutations that occurred in the Omicron variant and correlated how these mutations affect infectivity and pathogenicity. Then, we studied how mutations in the receptor-binding domain affect its interaction with host factors through molecular docking. Finally, we evaluated the drug efficacy against the main protease of the Omicron through molecular docking and validated the docking results with molecular dynamics simulation. Results: Phylogenetic and mutational analysis revealed the Omicron variant is similar to the highly infectious B.1.620 variant, while mutations within the prominent proteins are hypothesized to alter its pathogenicity. Moreover, docking evaluations revealed significant differences in binding affinity with human receptors, angiotensin-converting enzyme 2 and NRP1. Surprisingly, most of the tested drugs were proven to be effective. Nirmatrelvir, 13b, and Lopinavir displayed increased effectiveness against Omicron. Conclusion: Omicron variant may be originated from the highly infectious B.1.620 variant, while it was less pathogenic due to the mutations in the prominent proteins. Nirmatrelvir, 13b, and Lopinavir would be the most effective, compared to other promising drugs that were proven effective.
AUTHOR CONTRIBUTIONS Md Sorwer Alam Parvez: Conceptualization; methodology; formal analysis; data interpretation; validation; visualization; original draft preparation. Manash Kumar Saha: Methodology; software; visualization. Md Ibrahim: Formal analysis. Yusha Araf: Formal analysis; original draft preparation and editing. Md Taufiqul Islam: Validation. Gen Ohtsuki: Supervision, writing-review & editing. Mohammad Jakir Hosen: Supervision, writing-review & editing. ACKNOWLEDGMENT This study was supported by grants from the Mitsubishi Foundation, the Takeda Science Foundation (to G. O.). CONFLICTS OF INTEREST The authors declare no conflicts of interest. ETHICS STATEMENT This study did not deal with human subjects and biological materials. All open-source data were analyzed, in which all personal information was anonymized, and no data allowing individual identification was retained. Therefore, no ethics approval and no informed consent were required.
References
Abascal, Vega, A general purpose model for the condensed phases of water: TIP4P/2005, J Chem Phys
Abraham, Murtola, Schulz, GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX
Angelini, Akhlaghpour, Neuman, Buchmeier, Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles, mBio, doi:10.1128/mBio.00524-13
Anwar, Nasrullah, Hosen, COVID-19 and Bangladesh: challenges and how to address them, Front Public Health, doi:10.3389/fpubh.2020.00154
Barton, Macgowan, Kutuzov, Dushek, Barton et al., Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics, eLife
Behzadi, Gajdács, Writing a strong scientific paper in medicine and the biomedical sciences: a checklist and recommendations for early career researchers, Biol Futur, doi:10.1007/s42977-021-00095-z
Benvenuto, Angeletti, Giovanetti, Evolutionary analysis of SARS-CoV-2: how mutation of non-structural protein 6 (NSP6) could affect viral autophagy, J Infect, doi:10.1016/j.jinf.2020.03.058
Berman, Westbrook, Feng, The protein data bank, Nucleic Acids Res, doi:10.1093/nar/28.1.235
Biovia, Systèmes, BIOVIA Discovery studio
Brown, Leroy, Sander, MView: a web-compatible database search or multiple alignment viewer, Bioinformatics, doi:10.1093/bioinformatics/14.4.380
Collie, Champion, Moultrie, Bekker, Gray, Effectiveness of BNT162b2 vaccine against omicron variant in South Africa, N Engl J Med, doi:10.1056/NEJMc2119270
Colovos, Yeates, Verification of protein structures: patterns of nonbonded atomic interactions, Prot Sci, doi:10.1002/pro.5560020916
Cong, Ulasli, Schepers, Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle, J Virol, doi:10.1128/jvi.01925-19
Daly, Simonetti, Klein, Neuropilin-1 is a host factor for SARS-CoV-2 infection, Science, doi:10.1126/science.abd3072
Delano, The PyMOL molecular graphics system
Dolinsky, Nielsen, Mccammon, Baker, PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations, Nucleic Acids Res, doi:10.1093/nar/gkh381
Dudas, Hong, Potter, Emergence and spread of SARS-CoV-2 lineage B. 1.620 with variant of concern-like mutations and deletions, Nat Commun, doi:10.1038/s41467-021-26055-8
Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, doi:10.1093/nar/gkh340
Essahib, Verheyen, Tournaye, Van De Velde, SARS-CoV-2 host receptors ACE2 and CD147 (BSG) are present on human oocytes and blastocysts, J Assist Reprod Genet, doi:10.1007/s10815-020-01952-x
Fleming, Shubin, Sussman, Casteel, Stohlman, Monoclonal antibodies to the matrix (El) glycoprotein of mouse hepatitis virus protect mice from encephalitis, Virology, doi:10.1016/0042-6822(89)90415-7
Gorkhali, Koirala, Rijal, Mainali, Baral et al., Structure and function of major SARS-CoV-2 and SARS-CoV proteins, Bioinform Biol Insights, doi:10.1177/11779322211025876
Gu, Krishnan, Ng, Probable transmission of SARS-CoV-2 Omicron variant in quarantine hotel, Hong Kong, China, November 2021, Emerging Infect Dis
Harvey, Carabelli, Jackson, SARS-CoV-2 variants, spike mutations and immune escape, Nat Rev Microbiol, doi:10.1038/s41579-021-00573-0
Hiscott, Alexandridi, Muscolini, The global impact of the coronavirus pandemic, Cytokine Growth Factor Rev, doi:10.1016/j.cytogfr.2020.05.010
Hoang, Chernomor, Haeseler, Minh, Vinh, UFBoot2: improving the ultrafast bootstrap approximation, Mol Biol Evol, doi:10.1093/molbev/msx281
Hoffmann, Krüger, Schulz, The Omicron variant is highly resistant against antibody-mediated neutralization: implications for control of the COVID-19 pandemic, Cell, doi:10.1016/j.cell.2021.12.032
Hogue, Machamer, Coronavirus structural proteins and virus assembly, Nidoviruses, doi:10.1128/9781555815790
Jassat, Karim, Mudara, Clinical severity of covid-19 patients admitted to hospitals in Gauteng, South Africa during the Omicron-dominant fourth wave, Preprints with the Lancet, doi:10.2139/ssrn.3996320
Jin, Du, Xu, Structure of M pro from SARS-CoV-2 and discovery of its inhibitors, Nature, doi:10.1038/s41586-020-2223-y
Jumper, Evans, Pritzel, Highly accurate protein structure prediction with AlphaFold, Nature, doi:10.1038/s41586-021-03819-2
Kalyaanamoorthy, Minh, Wong, Haeseler, Jermiin, ModelFinder: fast model selection for accurate phylogenetic estimates, Nat Methods, doi:10.1038/nmeth.4285
Kannan, Spratt, Cohen, Evolutionary analysis of the Delta and Delta Plus variants of the SARS-CoV-2 viruses, J Autoimmun, doi:10.1016/j.jaut.2021.102715
Kannan, Spratt, Sharma, Chand, Byrareddy et al., Omicron SARS-CoV-2 variant: unique features and their impact on pre-existing antibodies, J Autoimmun, doi:10.1016/j.jaut.2021.102779
Karim, De Oliveira, Loots, Appropriate names for COVID-19 variants, Science, doi:10.1126/science.abh0836
Karim, Karim, Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic, Lancet, doi:10.1016/s0140-6736(21)02758-6
Kiefer, Arnold, Künzli, Bordoli, Schwede, The SWISS-MODEL Repository and associated resources, Nucleic Acids Res, doi:10.1093/nar/gkn750
Kim, Thiessen, Bolton, PubChem substance and compound databases, Nucleic Acids Res, doi:10.1093/nar/gkv951
Kumar, Stecher, Li, Knyaz, Tamura, MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol Biol Evol, doi:10.1093/molbev/msy096
Kumari, Kumar, Open Source Drug Discovery Consortium, Lynn A. g_mmpbsa: a GROMACS tool for highthroughput MM-PBSA calculations, J Chem Inf Model
Lai, Cavanagh, The molecular biology of coronaviruses, Adv Virus Res, doi:10.1016/S0065-3527(08)60286-9
Laskowski, Macarthur, Moss, Thornton, PROCHECK: a program to check the stereochemical quality of protein structures, J Appl Crystal, doi:10.1107/S0021889892009944
Letunic, Bork, Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation, Bioinformatics, doi:10.1093/nar/gkab301
Li, Wang, Lavrijsen, SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination, Cell Res, doi:10.1038/s41422-022-00618-w
Luo, Liu, Wang, Gong, From SARS to the Omicron variant of COVID-19: China's policy adjustments and changes to prevent and control infectious diseases, Biosci Trends, doi:10.5582/bst.2021.01535
Minh, Schmidt, Chernomor, IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era, Mol Biol Evol, doi:10.1093/molbev/msaa015
Nelson, Stohlman, Tahara, High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA, Microbiology, doi:10.1099/0022-1317-81-1-181
Poudel, Ishak, Perez-Fernandez, Highly mutated SARS-CoV-2 Omicron variant sparks significant concern among global experts-what is known so far?, Travel Med Infect Dis, doi:10.1016/j.tmaid.2021.102234
Ramírez-Aportela, Blanco, Chacón, FRODOCK 2.0: fast protein-protein docking server, Bioinformatics, doi:10.1093/bioinformatics/btw141
Scialo, Amato, ACE2: the major cell entry receptor for SARS-CoV-2, Lung, doi:10.1007/s00408-020-00408-4
Sievers, Higgins, Clustal omega, Curr Protoc Bioinformatics, doi:10.1002/0471250953.bi0313s48
Stohlman, Baric, Nelson, Soe, Welter et al., Specific interaction between coronavirus leader RNA and nucleocapsid protein, J Virol, doi:10.1128/jvi.62.11.4288-4295.1988
Torjesen, Covid-19: Omicron may be more transmissible than other variants and partly resistant to existing vaccines, scientists fear, BMJ, doi:10.1136/bmj.n2943
Tortorici, Veesler, Structural insights into coronavirus entry, Adv Virus Res, doi:10.1016/bs.aivir.2019.08.002
Trott, Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J Comput Chem, doi:10.1002/jcc.21334
Van Gunsteren, Billeter, Eising, Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag AG an der ETH Zürich
Vandyck, Deval, Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection, Curr Opin Virol, doi:10.1016/j.coviro.2021.04.006
Vangeel, Chiu, Jonghe, Insights from a computational analysis of the SARS-CoV-2 Omicron variant: Host-pathogen interaction, pathogenicity, and possible drug therapeutics, Immun Inflamm Dis
Vanommeslaeghe, Hatcher, Acharya, CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields, J Comput Chem, doi:10.1002/jcc.21367
Vita, Chini, Bifulco, Lauro, Insights into the ligand binding to bromodomain-containing protein 9 (BRD9): a guide to the selection of potential binders by computational methods, Molecules
Wishart, Feunang, Guo, DrugBank 5.0: a major update to the DrugBank database for 2018, Nucleic Acids Res, doi:10.1093/nar/gkx1037
Yang, Cai, Zhang, DPP-4 inhibitors may improve the mortality of coronavirus disease 2019: a meta-analysis, PLoS One, doi:10.1371/journal.pone.0251916
Yurkovetskiy, Wang, Pascal, Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant, Cell, doi:10.1016/j.cell.2020.09.032
Zhang, Lin, Sun, Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors, Science, doi:10.1126/science.abb3405
Zhu, Lee, Van De Leemput, Lee, Han, Functional analysis of SARS-CoV-2 proteins in Drosophila identifies Orf6-induced pathogenic effects with Selinexor as an effective treatment, Cell Biosci, doi:10.1186/s13578-021-00567-8
{ 'indexed': {'date-parts': [[2022, 7, 1]], 'date-time': '2022-07-01T14:40:01Z', 'timestamp': 1656686401824}, 'reference-count': 66, 'publisher': 'Wiley', 'issue': '7', 'license': [ { 'start': { 'date-parts': [[2022, 6, 21]], 'date-time': '2022-06-21T00:00:00Z', 'timestamp': 1655769600000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'http://creativecommons.org/licenses/by/4.0/'}, { 'start': { 'date-parts': [[2022, 6, 21]], 'date-time': '2022-06-21T00:00:00Z', 'timestamp': 1655769600000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'http://doi.wiley.com/10.1002/tdm_license_1.1'}], 'funder': [ { 'DOI': '10.13039/100007449', 'name': 'Takeda Science Foundation', 'doi-asserted-by': 'publisher'}, { 'DOI': '10.13039/501100004398', 'name': 'Mitsubishi Foundation', 'doi-asserted-by': 'publisher'}], 'content-domain': {'domain': ['onlinelibrary.wiley.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2022, 7]]}, 'DOI': '10.1002/iid3.639', 'type': 'journal-article', 'created': {'date-parts': [[2022, 6, 21]], 'date-time': '2022-06-21T12:05:24Z', 'timestamp': 1655813124000}, 'update-policy': 'http://dx.doi.org/10.1002/crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Insights from a computational analysis of the SARS‐CoV‐2 Omicron variant: Host–pathogen ' 'interaction, pathogenicity, and possible drug therapeutics', 'prefix': '10.1002', 'volume': '10', 'author': [ { 'ORCID': 'http://orcid.org/0000-0002-9726-1009', 'authenticated-orcid': False, 'given': 'Md Sorwer Alam', 'family': 'Parvez', 'sequence': 'first', 'affiliation': [ { 'name': 'Department of Drug Discovery Medicine Kyoto University Graduate ' 'School of Medicine Kyoto Japan'}, { 'name': 'Department of Genetic Engineering &amp; Biotechnology Shahjalal ' 'University of Science &amp; Technology Sylhet Bangladesh'}]}, { 'given': 'Manash Kumar', 'family': 'Saha', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Genetic Engineering &amp; Biotechnology Shahjalal ' 'University of Science &amp; Technology Sylhet Bangladesh'}]}, { 'given': 'Md.', 'family': 'Ibrahim', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Genetic Engineering &amp; Biotechnology Shahjalal ' 'University of Science &amp; Technology Sylhet Bangladesh'}]}, { 'given': 'Yusha', 'family': 'Araf', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Genetic Engineering &amp; Biotechnology Shahjalal ' 'University of Science &amp; Technology Sylhet Bangladesh'}]}, { 'given': 'Md. Taufiqul', 'family': 'Islam', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Genetic Engineering &amp; Biotechnology Shahjalal ' 'University of Science &amp; Technology Sylhet Bangladesh'}]}, { 'ORCID': 'http://orcid.org/0000-0003-3004-5886', 'authenticated-orcid': False, 'given': 'Gen', 'family': 'Ohtsuki', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Drug Discovery Medicine Kyoto University Graduate ' 'School of Medicine Kyoto Japan'}]}, { 'given': 'Mohammad Jakir', 'family': 'Hosen', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Genetic Engineering &amp; Biotechnology Shahjalal ' 'University of Science &amp; Technology Sylhet Bangladesh'}]}], 'member': '311', 'published-online': {'date-parts': [[2022, 6, 21]]}, 'reference': [ { 'key': 'e_1_2_10_2_1', 'unstructured': "World Health Organization (WHO). Impact of COVID‐19 on people's " 'livelihoods their health and our food systems.\xa02020. Accessed ' 'December 19 ' '2021.https://www.who.int/news/item/13-10-2020-impact-of-covid-19-on-people%27s-livelihoods-their-health-and-our-food-systems'}, { 'key': 'e_1_2_10_3_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cytogfr.2020.05.010'}, {'key': 'e_1_2_10_4_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fpubh.2020.00154'}, {'key': 'e_1_2_10_5_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abh0836'}, { 'key': 'e_1_2_10_6_1', 'unstructured': 'World Health Organization (WHO). Tracking SARS‐CoV‐2 variants.2021. ' 'Accessed December 19 ' '2021.https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/'}, {'key': 'e_1_2_10_7_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMc2119270'}, { 'key': 'e_1_2_10_8_1', 'first-page': '\u200b', 'article-title': 'Clinical severity of covid‐19 patients admitted to hospitals in ' 'Gauteng, South Africa during the Omicron‐dominant fourth wave', 'author': 'Jassat W', 'year': '2021', 'journal-title': 'Preprints with the Lancet'}, {'key': 'e_1_2_10_9_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1136/bmj.n2943'}, {'key': 'e_1_2_10_10_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3201/eid2802.212422'}, { 'key': 'e_1_2_10_11_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0140-6736(21)02758-6'}, { 'key': 'e_1_2_10_12_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41579-021-00573-0'}, { 'key': 'e_1_2_10_13_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s42977-021-00095-z'}, {'key': 'e_1_2_10_14_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkh340'}, {'key': 'e_1_2_10_15_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/molbev/msaa015'}, {'key': 'e_1_2_10_16_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nmeth.4285'}, {'key': 'e_1_2_10_17_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/molbev/msx281'}, { 'key': 'e_1_2_10_18_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/bioinformatics/btl529'}, {'key': 'e_1_2_10_19_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/molbev/msy096'}, { 'key': 'e_1_2_10_20_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/0471250953.bi0313s48'}, { 'key': 'e_1_2_10_21_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/bioinformatics/14.4.380'}, {'key': 'e_1_2_10_22_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/28.1.235'}, { 'key': 'e_1_2_10_23_1', 'unstructured': 'DeLanoWL. The PyMOL molecular graphics system.\xa0' '2002.http://www.pymol.org'}, {'key': 'e_1_2_10_24_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkn750'}, {'key': 'e_1_2_10_25_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/pro.5560020916'}, {'key': 'e_1_2_10_26_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1107/S0021889892009944'}, { 'key': 'e_1_2_10_27_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/bioinformatics/btw141'}, { 'key': 'e_1_2_10_28_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-021-03819-2'}, {'key': 'e_1_2_10_29_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkh381'}, {'key': 'e_1_2_10_30_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jcc.21367'}, {'key': 'e_1_2_10_31_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-020-2223-y'}, {'key': 'e_1_2_10_32_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abb3405'}, { 'key': 'e_1_2_10_33_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.coviro.2021.04.006'}, {'key': 'e_1_2_10_34_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkx1037'}, {'key': 'e_1_2_10_35_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkv951'}, {'key': 'e_1_2_10_36_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jcc.21334'}, { 'key': 'e_1_2_10_37_1', 'unstructured': 'Biovia Dassault Systèmes.\xa0BIOVIA Discovery studio Release 2020 San ' 'Diego: Dassault Systèmes. 2020.'}, { 'key': 'e_1_2_10_38_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.softx.2015.06.001'}, { 'key': 'e_1_2_10_39_1', 'first-page': '1', 'article-title': 'Biomolecular simulation: the GROMOS96 manual and user guide', 'volume': '86', 'author': 'Gunsteren WF', 'year': '1996', 'journal-title': 'Vdf Hochschulverlag AG an der ETH\xa0Zürich'}, {'key': 'e_1_2_10_40_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1063/1.2121687'}, {'key': 'e_1_2_10_41_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/ci500020m'}, { 'key': 'e_1_2_10_42_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s00408-020-00408-4'}, {'key': 'e_1_2_10_43_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abd3072'}, { 'key': 'e_1_2_10_44_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0251916'}, { 'key': 'e_1_2_10_45_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s10815-020-01952-x'}, { 'key': 'e_1_2_10_46_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jaut.2021.102715'}, { 'key': 'e_1_2_10_47_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.tmaid.2021.102234'}, { 'key': 'e_1_2_10_48_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jaut.2021.102779'}, { 'key': 'e_1_2_10_49_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2021.12.032'}, { 'key': 'e_1_2_10_50_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-021-26055-8'}, { 'key': 'e_1_2_10_51_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2020.09.032'}, { 'key': 'e_1_2_10_52_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s13578-021-00567-8'}, { 'key': 'e_1_2_10_53_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jinf.2020.03.058'}, {'key': 'e_1_2_10_54_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1177/11779322211025876'}, {'key': 'e_1_2_10_55_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/mBio.00524-13'}, { 'key': 'e_1_2_10_56_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/bs.aivir.2019.08.002'}, { 'key': 'e_1_2_10_57_1', 'first-page': '179', 'article-title': 'Coronavirus structural proteins and virus assembly', 'author': 'Hogue BG', 'year': '2007', 'journal-title': 'Nidoviruses'}, { 'key': 'e_1_2_10_58_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0065-3527(08)60286-9'}, { 'key': 'e_1_2_10_59_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0042-6822(89)90415-7'}, {'key': 'e_1_2_10_60_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.01925-19'}, { 'key': 'e_1_2_10_61_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1099/0022-1317-81-1-181'}, { 'key': 'e_1_2_10_62_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/jvi.62.11.4288-4295.1988'}, {'key': 'e_1_2_10_63_1', 'doi-asserted-by': 'publisher', 'DOI': '10.7554/eLife.70658'}, {'key': 'e_1_2_10_64_1', 'doi-asserted-by': 'publisher', 'DOI': '10.5582/bst.2021.01535'}, {'key': 'e_1_2_10_65_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/molecules26237192'}, { 'key': 'e_1_2_10_66_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41422-022-00618-w'}, { 'key': 'e_1_2_10_67_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2022.105252'}], 'container-title': 'Immunity, Inflammation and Disease', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://onlinelibrary.wiley.com/doi/pdf/10.1002/iid3.639', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://onlinelibrary.wiley.com/doi/full-xml/10.1002/iid3.639', 'content-type': 'application/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://onlinelibrary.wiley.com/doi/pdf/10.1002/iid3.639', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2022, 6, 30]], 'date-time': '2022-06-30T11:56:00Z', 'timestamp': 1656590160000}, 'score': 1, 'resource': {'primary': {'URL': 'https://onlinelibrary.wiley.com/doi/10.1002/iid3.639'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2022, 6, 21]]}, 'references-count': 66, 'journal-issue': {'issue': '7', 'published-print': {'date-parts': [[2022, 7]]}}, 'alternative-id': ['10.1002/iid3.639'], 'URL': 'http://dx.doi.org/10.1002/iid3.639', 'relation': {}, 'ISSN': ['2050-4527', '2050-4527'], 'subject': ['Immunology', 'Immunology and Allergy'], 'container-title-short': 'Immunity Inflam &amp;amp; Disease', 'published': {'date-parts': [[2022, 6, 21]]}, 'assertion': [ { 'value': '2022-02-08', 'order': 0, 'name': 'received', 'label': 'Received', 'group': {'name': 'publication_history', 'label': 'Publication History'}}, { 'value': '2022-04-20', 'order': 1, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'publication_history', 'label': 'Publication History'}}, { 'value': '2022-06-21', 'order': 2, 'name': 'published', 'label': 'Published', 'group': {'name': 'publication_history', 'label': 'Publication History'}}]}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit