SARS-CoV-2 viral genes Nsp6, Nsp8, and M compromise cellular ATP levels to impair survival and function of human pluripotent stem cell-derived cardiomyocytes
Juli Liu, Shiyong Wu, Yucheng Zhang, Cheng Wang, Sheng Liu, Jun Wan, Lei Yang
Stem Cell Research & Therapy, doi:10.1186/s13287-023-03485-3
Background Cardiovascular complications significantly augment the overall COVID-19 mortality, largely due to the susceptibility of human cardiomyocytes (CMs) to SARS-CoV-2 virus. SARS-CoV-2 virus encodes 27 genes, whose specific impacts on CM health are not fully understood. This study elucidates the deleterious effects of SARS-CoV-2 genes Nsp6, M, and Nsp8 on human CMs. Methods CMs were derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, using 2D and 3D differentiation methods. We overexpressed Nsp6, M, or Nsp8 in hPSCs and then applied whole mRNA-seq and mass spectrometry for multi-omics analysis. Co-immunoprecipitation mass spectrometry was utilized to map the protein interaction networks of Nsp6, M, and Nsp8 within host hiPSC-CMs.
Results Nsp6, Nsp8, and M globally perturb the transcriptome and proteome of hPSC-CMs. SARS-CoV-2 infection and the overexpression of Nsp6, Nsp8, or M coherently upregulated genes associated with apoptosis and immune/ inflammation pathways, whereas downregulated genes linked to heart contraction and functions. Global interactome analysis revealed interactions between Nsp6, Nsp8, and M with ATPase subunits. Overexpression of Nsp6, Nsp8, or M significantly reduced cellular ATP levels, markedly increased apoptosis, and compromised Ca 2+ handling in hPSC-CMs. Importantly, administration of FDA-approved drugs, ivermectin and meclizine, could restore ATP levels, thereby mitigating apoptosis and dysfunction in hPSC-CMs overexpressing Nsp6, Nsp8, or M.
Conclusion Overall, our findings uncover the extensive damaging effects of Nsp6, Nsp8, and M on hPSC-CMs, underlining the crucial role of ATP homeostasis in CM death and functional abnormalities induced by these SARS-CoV-2 genes, and reveal the potential therapeutic strategies to alleviate these detrimental effects with FDA-approved drugs.
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13287-023-03485-3. Additional file 1. Supplementary Figures. S1 . mRNA expression profiling of Nsp6OE, Nsp8OE, or MOE and control hESC-CMs.
Additional file 2. Table Additional file 3. Table S2 . Protein expression profiling of Nsp6OE, Nsp8OE, or MOE and control hESC-CMs. Additional file 4. Table S3 . CoIP-MS of Nsp6OE, Nsp8OE, or MOE and control hESC-CMs. Additional file 5. Table S4 . Primers for RT-qPCR. Author contributions JL initiated and designed the studies. JL and SW performed all experiments, and data collection and analyses. YZ, SL, and JW conducted bioinformatics analyses. CW assisted in CM functional studies. JL, SW, JW, and LY wrote the manuscript. All authors read and approved the final manuscript.
Declarations Ethics approval and consent to participate Not applicable.
Consent for publication Not applicable.
Competing interests The authors declare no competing interests. • fast, convenient online submission • thorough peer review by experienced researchers in your field • rapid publication on acceptance • support for research data, including large and complex data types • gold Open Access which fosters wider collaboration and increased citations maximum visibility for your research: over 100M website views per year
• At BMC, research is always in progress.
Learn more biomedcentral.com/submissions Ready to submit your research..
References
Bailey, Dmytrenko, Greenberg, Bredemeyer, Ma et al., SARS-CoV-2 infects human engineered heart tissues and models COVID-19 myocarditis, JACC Basic Transl Sci
Banerjee, Blanco, Bruce, Honson, Chen et al., SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses, Cell
Bers, Calcium cycling and signaling in cardiac myocytes, Annu Rev Physiol
Bers, Guo, Calcium signaling in cardiac ventricular myocytes, Ann N Y Acad Sci
Bojkova, Wagner, Shumliakivska, Aslan, Saleem et al., SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes, Cardiovasc Res
Caly, Druce, Catton, Jans, Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Res
Clerkin, Fried, Raikhelkar, Sayer, Griffin et al., COVID-19 and cardiovascular disease, Circulation
Dhakal, Sweitzer, Indik, Acharya, William, SARS-CoV-2 infection and cardiovascular disease: COVID-19 heart, Heart Lung Circ
Dobin, Davis, Schlesinger, Drenkow, Zaleski et al., STAR: ultrafast universal RNA-seq aligner, Bioinformatics
Fearnley, Roderick, Bootman, Calcium signaling in cardiac myocytes, Cold Spring Harb Perspect Biol
Gibbs, Cardiac energetics, Physiol Rev
Gohil, Sheth, Nilsson, Wojtovich, Lee et al., Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis, Nat Biotechnol
Gordon, Jang, Bouhaddou, Xu, Obernier et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature
Guo, Fan, Chen, Wu, Zhang et al., Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19), JAMA Cardiol
Hikmet, Mear, Edvinsson, Micke, Uhlen et al., The protein expression profile of ACE2 in human tissues, Mol Syst Biol
Hoffmann, Kleine-Weber, Schroeder, Kruger, Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell
Huang, Wang, Li, Ren, Zhao et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China Lancet
Lian, Zhang, Azarin, Zhu, Hazeltine et al., Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions, Nat Protoc
Liao, Smyth, Shi, The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads, Nucleic Acids Res
Lin, Kim, Li, Pan, Vergara et al., High-purity enrichment of functional cardiovascular cells from human iPS cells, Cardiovasc Res
Liu, Li, Lin, Sheng, Yang, HBL1 is a human long noncoding RNA that modulates cardiomyocyte development from pluripotent stem cells by counteracting MIR1, Dev Cell
Liu, Liu, Gao, Han, Chu et al., Genome-wide studies reveal the essential and opposite roles of ARID1A in controlling human cardiogenesis and neurogenesis from pluripotent stem cells, Genome Biol
Liu, Zhang, Han, Guo, Wu et al., Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral gene Orf9c on human pluripotent stem cell-derived cardiomyocytes, Stem Cell Rep
Lu, Lin, Li, Arora, Han et al., Overexpression of microRNA-1 promotes cardiomyocyte commitment from human cardiovascular progenitors via suppressing WNT and FGF signaling pathways, J Mol Cell Cardiol
Ludwig, Bergendahl, Levenstein, Yu, Probasco et al., Feeder-independent culture of human embryonic stem cells, Nat Methods
Ludwig, Levenstein, Jones, Berggren, Mitchen et al., Derivation of human embryonic stem cells in defined conditions, Nat Biotechnol
Marchiano, Hsiang, Khanna, Higashi, Whitmore et al., SARS-CoV-2 infects human pluripotent stem cell-derived cardiomyocytes, impairing electrical and mechanical function, Stem Cell Rep
Miyoshi, Oubrahim, Chock, Stadtman, Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis, Proc Natl Acad Sci
Nagai, Satomi, Abiru, Miyamoto, Nagasawa et al., Antihypertrophic effects of small molecules that maintain mitochondrial atp levels under hypoxia, EBioMedicine
Nalbandian, Sehgal, Gupta, Madhavan, Mcgroder et al., Post-acute COVID-19 syndrome, Nat Med
Nishiga, Wang, Han, Lewis, Wu, COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives, Nat Rev Cardiol
Palazzuoli, Beltrami, Mccullough, Acute COVID-19 management in heart failure patients: a specific setting requiring detailed inpatient and outpatient hospital care, Biomedicines
Peltier, Latham, Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues, RNA
Perez-Bermejo, Kang, Rockwood, Simoneau, Joy et al., SARS-CoV-2 infection of human iPSC-derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19, Sci Transl Med
Raman, Bluemke, Lüscher, Neubauer, Long COVID: postacute sequelae of COVID-19 with a cardiovascular focus, Eur Heart J
Robinson, Mccarthy, Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics
Shang, Wan, Luo, Ye, Geng et al., Cell entry mechanisms of SARS-CoV-2, Proc Natl Acad Sci
Sharma, Garcia, Jr, Wang, Plummer et al., Human iPSC-derived cardiomyocytes are susceptible to SARS-CoV-2 infection, Cell Rep Med
Shi, Qin, Shen, Cai, Liu et al., Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, JAMA Cardiol
Shi, Qin, Yang, Coronavirus disease 2019 (COVID-19) and cardiac injury-reply, JAMA Cardiol
Suga, Ventricular energetics, Physiol Rev
Sun, Liu, Huang, Xu, Hu et al., SARS-CoV-2 non-structural protein 6 triggers NLRP3-dependent pyroptosis by targeting ATP6AP1, Cell Death Differ
Tatsumi, Shiraishi, Keira, Akashi, Mano et al., Intracellular ATP is required for mitochondrial apoptotic pathways in isolated hypoxic rat cardiac myocytes, Cardiovasc Res
Tohyama, Hattori, Sano, Hishiki, Nagahata et al., Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes, Cell Stem Cell
Tsujimoto, Apoptosis and necrosis: intracellular ATP level as a determinant for cell death modes, Cell Death Differ
Xie, Xu, Bowe, Al-Aly, Long-term cardiovascular outcomes of, Nat Med
Yang, Han, Nilsson-Payant, Gupta, Wang et al., A Human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids, Cell Stem Cell
Yang, Soonpaa, Adler, Roepke, Kattman et al., Human cardiovascular progenitor cells develop from a KDR+ embryonicstem-cell-derived population, Nature
Yang, Wu, Meng, Wang, Younis et al., SARS-CoV-2Membrane protein causes the mitochondrial apoptosis and pulmonary edema via targeting BOK, Cell Death Differ
Zang, Castro, Mccune, Zeng, Rothlauf et al., TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes, Sci Immunol
Zhou, Yang, Wang, Hu, Zhang et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature
Zhu, Wang, Huang, Lee, Lee et al., SARS-CoV-2 Nsp6 damages Drosophila heart and mouse cardiomyocytes through MGA/MAX complex-mediated increased glycolysis, Commun Biol
Zhu, Zhang, Li, Yang, Song, A novel coronavirus from patients with pneumonia in China, N Engl J Med
Zhuo, Gorgun, Englander, Augmentation of glycolytic metabolism by meclizine is indispensable for protection of dorsal root ganglion neurons from hypoxia-induced mitochondrial compromise, Free Radic Biol Med
DOI record:
{
"DOI": "10.1186/s13287-023-03485-3",
"ISSN": [
"1757-6512"
],
"URL": "http://dx.doi.org/10.1186/s13287-023-03485-3",
"abstract": "<jats:title>Abstract</jats:title><jats:sec>\n <jats:title>Background</jats:title>\n <jats:p>Cardiovascular complications significantly augment the overall COVID-19 mortality, largely due to the susceptibility of human cardiomyocytes (CMs) to SARS-CoV-2 virus. SARS-CoV-2 virus encodes 27 genes, whose specific impacts on CM health are not fully understood. This study elucidates the deleterious effects of SARS-CoV-2 genes Nsp6, M, and Nsp8 on human CMs.</jats:p>\n </jats:sec><jats:sec>\n <jats:title>Methods</jats:title>\n <jats:p>CMs were derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, using 2D and 3D differentiation methods. We overexpressed Nsp6, M, or Nsp8 in hPSCs and then applied whole mRNA-seq and mass spectrometry for multi-omics analysis. Co-immunoprecipitation mass spectrometry was utilized to map the protein interaction networks of Nsp6, M, and Nsp8 within host hiPSC-CMs.</jats:p>\n </jats:sec><jats:sec>\n <jats:title>Results</jats:title>\n <jats:p>Nsp6, Nsp8, and M globally perturb the transcriptome and proteome of hPSC-CMs. SARS-CoV-2 infection and the overexpression of Nsp6, Nsp8, or M coherently upregulated genes associated with apoptosis and immune/inflammation pathways, whereas downregulated genes linked to heart contraction and functions. Global interactome analysis revealed interactions between Nsp6, Nsp8, and M with ATPase subunits. Overexpression of Nsp6, Nsp8, or M significantly reduced cellular ATP levels, markedly increased apoptosis, and compromised Ca<jats:sup>2+</jats:sup> handling in hPSC-CMs. Importantly, administration of FDA-approved drugs, ivermectin and meclizine, could restore ATP levels, thereby mitigating apoptosis and dysfunction in hPSC-CMs overexpressing Nsp6, Nsp8, or M.</jats:p>\n </jats:sec><jats:sec>\n <jats:title>Conclusion</jats:title>\n <jats:p>Overall, our findings uncover the extensive damaging effects of Nsp6, Nsp8, and M on hPSC-CMs, underlining the crucial role of ATP homeostasis in CM death and functional abnormalities induced by these SARS-CoV-2 genes, and reveal the potential therapeutic strategies to alleviate these detrimental effects with FDA-approved drugs.</jats:p>\n </jats:sec>",
"alternative-id": [
"3485"
],
"article-number": "249",
"assertion": [
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Received",
"name": "received",
"order": 1,
"value": "8 March 2023"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Accepted",
"name": "accepted",
"order": 2,
"value": "30 August 2023"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "First Online",
"name": "first_online",
"order": 3,
"value": "13 September 2023"
},
{
"group": {
"label": "Declarations",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 1
},
{
"group": {
"label": "Ethics approval and consent to participate",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 2,
"value": "Not applicable."
},
{
"group": {
"label": "Consent for publication",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 3,
"value": "Not applicable."
},
{
"group": {
"label": "Competing interests",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 4,
"value": "The authors declare no competing interests."
}
],
"author": [
{
"affiliation": [],
"family": "Liu",
"given": "Juli",
"sequence": "first"
},
{
"affiliation": [],
"family": "Wu",
"given": "Shiyong",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Zhang",
"given": "Yucheng",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Wang",
"given": "Cheng",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Liu",
"given": "Sheng",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Wan",
"given": "Jun",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-1479-2374",
"affiliation": [],
"authenticated-orcid": false,
"family": "Yang",
"given": "Lei",
"sequence": "additional"
}
],
"container-title": "Stem Cell Research & Therapy",
"container-title-short": "Stem Cell Res Ther",
"content-domain": {
"crossmark-restriction": false,
"domain": [
"link.springer.com"
]
},
"created": {
"date-parts": [
[
2023,
9,
13
]
],
"date-time": "2023-09-13T13:01:49Z",
"timestamp": 1694610109000
},
"deposited": {
"date-parts": [
[
2023,
9,
13
]
],
"date-time": "2023-09-13T14:05:27Z",
"timestamp": 1694613927000
},
"funder": [
{
"DOI": "10.13039/100006733",
"award": [
"Start up"
],
"doi-asserted-by": "publisher",
"name": "Indiana University"
}
],
"indexed": {
"date-parts": [
[
2023,
9,
14
]
],
"date-time": "2023-09-14T04:55:22Z",
"timestamp": 1694667322510
},
"is-referenced-by-count": 0,
"issue": "1",
"issued": {
"date-parts": [
[
2023,
9,
13
]
]
},
"journal-issue": {
"issue": "1",
"published-online": {
"date-parts": [
[
2023,
12
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2023,
9,
13
]
],
"date-time": "2023-09-13T00:00:00Z",
"timestamp": 1694563200000
}
},
{
"URL": "https://creativecommons.org/licenses/by/4.0",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2023,
9,
13
]
],
"date-time": "2023-09-13T00:00:00Z",
"timestamp": 1694563200000
}
}
],
"link": [
{
"URL": "https://link.springer.com/content/pdf/10.1186/s13287-023-03485-3.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://link.springer.com/article/10.1186/s13287-023-03485-3/fulltext.html",
"content-type": "text/html",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://link.springer.com/content/pdf/10.1186/s13287-023-03485-3.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "297",
"original-title": [],
"prefix": "10.1186",
"published": {
"date-parts": [
[
2023,
9,
13
]
]
},
"published-online": {
"date-parts": [
[
2023,
9,
13
]
]
},
"publisher": "Springer Science and Business Media LLC",
"reference": [
{
"DOI": "10.1056/NEJMoa2001017",
"author": "N Zhu",
"doi-asserted-by": "publisher",
"first-page": "727",
"issue": "8",
"journal-title": "N Engl J Med",
"key": "3485_CR1",
"unstructured": "Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.",
"volume": "382",
"year": "2020"
},
{
"DOI": "10.1038/s41586-020-2012-7",
"author": "P Zhou",
"doi-asserted-by": "publisher",
"first-page": "270",
"issue": "7798",
"journal-title": "Nature",
"key": "3485_CR2",
"unstructured": "Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3.",
"volume": "579",
"year": "2020"
},
{
"DOI": "10.1001/jamacardio.2020.1017",
"author": "T Guo",
"doi-asserted-by": "publisher",
"first-page": "811",
"issue": "7",
"journal-title": "JAMA Cardiol",
"key": "3485_CR3",
"unstructured": "Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811–8.",
"volume": "5",
"year": "2020"
},
{
"DOI": "10.1016/S0140-6736(20)30183-5",
"author": "C Huang",
"doi-asserted-by": "publisher",
"first-page": "497",
"issue": "10223",
"journal-title": "China Lancet",
"key": "3485_CR4",
"unstructured": "Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet. 2020;395(10223):497–506.",
"volume": "395",
"year": "2020"
},
{
"DOI": "10.1001/jamacardio.2020.0950",
"author": "S Shi",
"doi-asserted-by": "publisher",
"first-page": "802",
"issue": "7",
"journal-title": "JAMA Cardiol",
"key": "3485_CR5",
"unstructured": "Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802–10.",
"volume": "5",
"year": "2020"
},
{
"DOI": "10.1016/j.hlc.2020.05.101",
"author": "BP Dhakal",
"doi-asserted-by": "publisher",
"first-page": "973",
"issue": "7",
"journal-title": "Heart Lung Circ",
"key": "3485_CR6",
"unstructured": "Dhakal BP, Sweitzer NK, Indik JH, Acharya D, William P. SARS-CoV-2 infection and cardiovascular disease: COVID-19 heart. Heart Lung Circ. 2020;29(7):973–87.",
"volume": "29",
"year": "2020"
},
{
"DOI": "10.1161/CIRCULATIONAHA.120.046941",
"author": "KJ Clerkin",
"doi-asserted-by": "publisher",
"first-page": "1648",
"issue": "20",
"journal-title": "Circulation",
"key": "3485_CR7",
"unstructured": "Clerkin KJ, Fried JA, Raikhelkar J, Sayer G, Griffin JM, Masoumi A, et al. COVID-19 and cardiovascular disease. Circulation. 2020;141(20):1648–55.",
"volume": "141",
"year": "2020"
},
{
"DOI": "10.1038/s41569-020-0413-9",
"author": "M Nishiga",
"doi-asserted-by": "publisher",
"first-page": "543",
"issue": "9",
"journal-title": "Nat Rev Cardiol",
"key": "3485_CR8",
"unstructured": "Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol. 2020;17(9):543–58.",
"volume": "17",
"year": "2020"
},
{
"DOI": "10.1093/eurheartj/ehac031",
"author": "B Raman",
"doi-asserted-by": "publisher",
"first-page": "1157",
"issue": "11",
"journal-title": "Eur Heart J",
"key": "3485_CR9",
"unstructured": "Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43(11):1157–72.",
"volume": "43",
"year": "2022"
},
{
"DOI": "10.1038/s41591-022-01689-3",
"author": "Y Xie",
"doi-asserted-by": "publisher",
"first-page": "583",
"issue": "3",
"journal-title": "Nat Med",
"key": "3485_CR10",
"unstructured": "Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583–90.",
"volume": "28",
"year": "2022"
},
{
"DOI": "10.1016/j.jacbts.2021.01.002",
"author": "AL Bailey",
"doi-asserted-by": "publisher",
"first-page": "331",
"issue": "4",
"journal-title": "JACC Basic Transl Sci",
"key": "3485_CR11",
"unstructured": "Bailey AL, Dmytrenko O, Greenberg L, Bredemeyer AL, Ma P, Liu J, et al. SARS-CoV-2 infects human engineered heart tissues and models COVID-19 myocarditis. JACC Basic Transl Sci. 2021;6(4):331–45.",
"volume": "6",
"year": "2021"
},
{
"DOI": "10.1016/j.cell.2020.02.052",
"author": "M Hoffmann",
"doi-asserted-by": "publisher",
"first-page": "271",
"issue": "2",
"journal-title": "Cell",
"key": "3485_CR12",
"unstructured": "Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280 e278.",
"volume": "181",
"year": "2020"
},
{
"DOI": "10.1073/pnas.2003138117",
"author": "J Shang",
"doi-asserted-by": "publisher",
"first-page": "11727",
"issue": "21",
"journal-title": "Proc Natl Acad Sci USA",
"key": "3485_CR13",
"unstructured": "Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA. 2020;117(21):11727–34.",
"volume": "117",
"year": "2020"
},
{
"DOI": "10.1126/sciimmunol.abc3582",
"author": "R Zang",
"doi-asserted-by": "publisher",
"first-page": "eabc3582",
"issue": "47",
"journal-title": "Sci Immunol",
"key": "3485_CR14",
"unstructured": "Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 2020;5(47):eabc3582.",
"volume": "5",
"year": "2020"
},
{
"DOI": "10.15252/msb.20209610",
"author": "F Hikmet",
"doi-asserted-by": "publisher",
"first-page": "e9610",
"issue": "7",
"journal-title": "Mol Syst Biol",
"key": "3485_CR15",
"unstructured": "Hikmet F, Mear L, Edvinsson A, Micke P, Uhlen M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol. 2020;16(7):e9610.",
"volume": "16",
"year": "2020"
},
{
"DOI": "10.1016/j.stem.2020.06.015",
"author": "L Yang",
"doi-asserted-by": "publisher",
"first-page": "125",
"issue": "1",
"journal-title": "Cell Stem Cell",
"key": "3485_CR16",
"unstructured": "Yang L, Han Y, Nilsson-Payant BE, Gupta V, Wang P, Duan X, et al. A Human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Cell Stem Cell. 2020;27(1):125-136 e127.",
"volume": "27",
"year": "2020"
},
{
"DOI": "10.1016/j.xcrm.2020.100052",
"author": "A Sharma",
"doi-asserted-by": "publisher",
"first-page": "100052",
"issue": "4",
"journal-title": "Cell Rep Med",
"key": "3485_CR17",
"unstructured": "Sharma A, Garcia G Jr, Wang Y, Plummer JT, Morizono K, Arumugaswami V, et al. Human iPSC-derived cardiomyocytes are susceptible to SARS-CoV-2 infection. Cell Rep Med. 2020;1(4):100052.",
"volume": "1",
"year": "2020"
},
{
"DOI": "10.1093/cvr/cvaa267",
"author": "D Bojkova",
"doi-asserted-by": "publisher",
"first-page": "2207",
"issue": "14",
"journal-title": "Cardiovasc Res",
"key": "3485_CR18",
"unstructured": "Bojkova D, Wagner JUG, Shumliakivska M, Aslan GS, Saleem U, Hansen A, et al. SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes. Cardiovasc Res. 2020;116(14):2207–15.",
"volume": "116",
"year": "2020"
},
{
"DOI": "10.1126/scitranslmed.abf7872",
"author": "JA Perez-Bermejo",
"doi-asserted-by": "publisher",
"first-page": "eabf7872",
"issue": "590",
"journal-title": "Sci Transl Med",
"key": "3485_CR19",
"unstructured": "Perez-Bermejo JA, Kang S, Rockwood SJ, Simoneau CR, Joy DA, Silva AC, et al. SARS-CoV-2 infection of human iPSC—derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19. Sci Transl Med. 2021;13(590):eabf7872.",
"volume": "13",
"year": "2021"
},
{
"DOI": "10.1016/j.stemcr.2021.02.008",
"author": "S Marchiano",
"doi-asserted-by": "publisher",
"first-page": "478",
"issue": "3",
"journal-title": "Stem Cell Rep",
"key": "3485_CR20",
"unstructured": "Marchiano S, Hsiang TY, Khanna A, Higashi T, Whitmore LS, Bargehr J, et al. SARS-CoV-2 infects human pluripotent stem cell-derived cardiomyocytes, impairing electrical and mechanical function. Stem Cell Rep. 2021;16(3):478–92.",
"volume": "16",
"year": "2021"
},
{
"DOI": "10.1016/j.stemcr.2022.01.014",
"author": "J Liu",
"doi-asserted-by": "publisher",
"first-page": "522",
"issue": "3",
"journal-title": "Stem Cell Rep",
"key": "3485_CR21",
"unstructured": "Liu J, Zhang Y, Han L, Guo S, Wu S, Doud EH, et al. Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral gene Orf9c on human pluripotent stem cell-derived cardiomyocytes. Stem Cell Rep. 2022;17(3):522–37.",
"volume": "17",
"year": "2022"
},
{
"DOI": "10.1038/nmeth902",
"author": "TE Ludwig",
"doi-asserted-by": "publisher",
"first-page": "637",
"issue": "8",
"journal-title": "Nat Methods",
"key": "3485_CR22",
"unstructured": "Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA. Feeder-independent culture of human embryonic stem cells. Nat Methods. 2006;3(8):637–46.",
"volume": "3",
"year": "2006"
},
{
"DOI": "10.1038/nbt1177",
"author": "TE Ludwig",
"doi-asserted-by": "publisher",
"first-page": "185",
"issue": "2",
"journal-title": "Nat Biotechnol",
"key": "3485_CR23",
"unstructured": "Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24(2):185–7.",
"volume": "24",
"year": "2006"
},
{
"DOI": "10.1038/nprot.2012.150",
"author": "X Lian",
"doi-asserted-by": "publisher",
"first-page": "162",
"issue": "1",
"journal-title": "Nat Protoc",
"key": "3485_CR24",
"unstructured": "Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc. 2013;8(1):162–75.",
"volume": "8",
"year": "2013"
},
{
"DOI": "10.1038/nature06894",
"author": "L Yang",
"doi-asserted-by": "publisher",
"first-page": "524",
"issue": "7194",
"journal-title": "Nature",
"key": "3485_CR25",
"unstructured": "Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008;453(7194):524–8.",
"volume": "453",
"year": "2008"
},
{
"DOI": "10.1093/cvr/cvs185",
"author": "B Lin",
"doi-asserted-by": "publisher",
"first-page": "327",
"issue": "3",
"journal-title": "Cardiovasc Res",
"key": "3485_CR26",
"unstructured": "Lin B, Kim J, Li Y, Pan H, Carvajal-Vergara X, Salama G, et al. High-purity enrichment of functional cardiovascular cells from human iPS cells. Cardiovasc Res. 2012;95(3):327–35.",
"volume": "95",
"year": "2012"
},
{
"DOI": "10.1261/rna.939908",
"author": "HJ Peltier",
"doi-asserted-by": "publisher",
"first-page": "844",
"issue": "5",
"journal-title": "RNA",
"key": "3485_CR27",
"unstructured": "Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. 2008;14(5):844–52.",
"volume": "14",
"year": "2008"
},
{
"DOI": "10.1016/j.yjmcc.2013.07.019",
"author": "TY Lu",
"doi-asserted-by": "publisher",
"first-page": "146",
"journal-title": "J Mol Cell Cardiol",
"key": "3485_CR28",
"unstructured": "Lu TY, Lin B, Li Y, Arora A, Han L, Cui C, et al. Overexpression of microRNA-1 promotes cardiomyocyte commitment from human cardiovascular progenitors via suppressing WNT and FGF signaling pathways. J Mol Cell Cardiol. 2013;63:146–54.",
"volume": "63",
"year": "2013"
},
{
"DOI": "10.1093/bioinformatics/bts635",
"author": "A Dobin",
"doi-asserted-by": "publisher",
"first-page": "15",
"issue": "1",
"journal-title": "Bioinformatics",
"key": "3485_CR29",
"unstructured": "Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.",
"volume": "29",
"year": "2013"
},
{
"DOI": "10.1093/nar/gkz114",
"author": "Y Liao",
"doi-asserted-by": "publisher",
"first-page": "e47",
"issue": "8",
"journal-title": "Nucleic Acids Res",
"key": "3485_CR30",
"unstructured": "Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47(8):e47.",
"volume": "47",
"year": "2019"
},
{
"DOI": "10.1093/bioinformatics/btp616",
"author": "MD Robinson",
"doi-asserted-by": "publisher",
"first-page": "139",
"issue": "1",
"journal-title": "Bioinformatics",
"key": "3485_CR31",
"unstructured": "Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.",
"volume": "26",
"year": "2010"
},
{
"DOI": "10.1001/jamacardio.2020.2456",
"author": "S Shi",
"doi-asserted-by": "publisher",
"first-page": "1199",
"journal-title": "JAMA Cardiol",
"key": "3485_CR32",
"unstructured": "Shi S, Qin M, Yang B. Coronavirus disease 2019 (COVID-19) and cardiac injury-reply. JAMA Cardiol. 2020;5(10):1199–200.",
"volume": "5",
"year": "2020"
},
{
"DOI": "10.1038/s41586-020-2286-9",
"author": "DE Gordon",
"doi-asserted-by": "publisher",
"first-page": "459",
"issue": "7816",
"journal-title": "Nature",
"key": "3485_CR33",
"unstructured": "Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–68.",
"volume": "583",
"year": "2020"
},
{
"DOI": "10.1186/s13059-020-02082-4",
"author": "J Liu",
"doi-asserted-by": "publisher",
"first-page": "169",
"issue": "1",
"journal-title": "Genome Biol",
"key": "3485_CR34",
"unstructured": "Liu J, Liu S, Gao H, Han L, Chu X, Sheng Y, et al. Genome-wide studies reveal the essential and opposite roles of ARID1A in controlling human cardiogenesis and neurogenesis from pluripotent stem cells. Genome Biol. 2020;21(1):169.",
"volume": "21",
"year": "2020"
},
{
"DOI": "10.1016/j.stem.2012.09.013",
"author": "S Tohyama",
"doi-asserted-by": "publisher",
"first-page": "127",
"issue": "1",
"journal-title": "Cell Stem Cell",
"key": "3485_CR35",
"unstructured": "Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T, et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 2013;12(1):127–37.",
"volume": "12",
"year": "2013"
},
{
"DOI": "10.1016/j.devcel.2017.10.026",
"author": "J Liu",
"doi-asserted-by": "publisher",
"first-page": "372",
"issue": "3",
"journal-title": "Dev Cell",
"key": "3485_CR36",
"unstructured": "Liu J, Li Y, Lin B, Sheng Y, Yang L. HBL1 is a human long noncoding RNA that modulates cardiomyocyte development from pluripotent stem cells by counteracting MIR1. Dev Cell. 2017;43(3):372.",
"volume": "43",
"year": "2017"
},
{
"DOI": "10.1016/j.cell.2020.10.004",
"author": "AK Banerjee",
"doi-asserted-by": "publisher",
"first-page": "1325",
"issue": "5",
"journal-title": "Cell",
"key": "3485_CR37",
"unstructured": "Banerjee AK, Blanco MR, Bruce EA, Honson DD, Chen LM, Chow A, et al. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell. 2020;183(5):1325-1339 e1321.",
"volume": "183",
"year": "2020"
},
{
"DOI": "10.1016/S0008-6363(03)00391-2",
"author": "T Tatsumi",
"doi-asserted-by": "publisher",
"first-page": "428",
"issue": "2",
"journal-title": "Cardiovasc Res",
"key": "3485_CR38",
"unstructured": "Tatsumi T, Shiraishi J, Keira N, Akashi K, Mano A, Yamanaka S, et al. Intracellular ATP is required for mitochondrial apoptotic pathways in isolated hypoxic rat cardiac myocytes. Cardiovasc Res. 2003;59(2):428–40.",
"volume": "59",
"year": "2003"
},
{
"DOI": "10.1038/sj.cdd.4400262",
"author": "Y Tsujimoto",
"doi-asserted-by": "publisher",
"first-page": "429",
"issue": "6",
"journal-title": "Cell Death Differ",
"key": "3485_CR39",
"unstructured": "Tsujimoto Y. Apoptosis and necrosis: intracellular ATP level as a determinant for cell death modes. Cell Death Differ. 1997;4(6):429–34.",
"volume": "4",
"year": "1997"
},
{
"DOI": "10.1073/pnas.0510346103",
"author": "N Miyoshi",
"doi-asserted-by": "publisher",
"first-page": "1727",
"issue": "6",
"journal-title": "Proc Natl Acad Sci USA",
"key": "3485_CR40",
"unstructured": "Miyoshi N, Oubrahim H, Chock PB, Stadtman ER. Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis. Proc Natl Acad Sci USA. 2006;103(6):1727–31.",
"volume": "103",
"year": "2006"
},
{
"DOI": "10.1016/j.ebiom.2017.09.022",
"author": "H Nagai",
"doi-asserted-by": "publisher",
"first-page": "147",
"journal-title": "EBioMedicine",
"key": "3485_CR41",
"unstructured": "Nagai H, Satomi T, Abiru A, Miyamoto K, Nagasawa K, Maruyama M, et al. Antihypertrophic effects of small molecules that maintain mitochondrial atp levels under hypoxia. EBioMedicine. 2017;24:147–58.",
"volume": "24",
"year": "2017"
},
{
"DOI": "10.1016/j.antiviral.2020.104787",
"author": "L Caly",
"doi-asserted-by": "publisher",
"first-page": "104787",
"journal-title": "Antiviral Res",
"key": "3485_CR42",
"unstructured": "Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787.",
"volume": "178",
"year": "2020"
},
{
"DOI": "10.1038/nbt.1606",
"author": "VM Gohil",
"doi-asserted-by": "publisher",
"first-page": "249",
"issue": "3",
"journal-title": "Nat Biotechnol",
"key": "3485_CR43",
"unstructured": "Gohil VM, Sheth SA, Nilsson R, Wojtovich AP, Lee JH, Perocchi F, et al. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat Biotechnol. 2010;28(3):249–55.",
"volume": "28",
"year": "2010"
},
{
"DOI": "10.1152/physrev.1978.58.1.174",
"author": "CL Gibbs",
"doi-asserted-by": "publisher",
"first-page": "174",
"issue": "1",
"journal-title": "Physiol Rev",
"key": "3485_CR44",
"unstructured": "Gibbs CL. Cardiac energetics. Physiol Rev. 1978;58(1):174–254.",
"volume": "58",
"year": "1978"
},
{
"DOI": "10.1152/physrev.1990.70.2.247",
"author": "H Suga",
"doi-asserted-by": "publisher",
"first-page": "247",
"issue": "2",
"journal-title": "Physiol Rev",
"key": "3485_CR45",
"unstructured": "Suga H. Ventricular energetics. Physiol Rev. 1990;70(2):247–77.",
"volume": "70",
"year": "1990"
},
{
"DOI": "10.1101/cshperspect.a004242",
"author": "CJ Fearnley",
"doi-asserted-by": "publisher",
"first-page": "a004242",
"issue": "11",
"journal-title": "Cold Spring Harb Perspect Biol",
"key": "3485_CR46",
"unstructured": "Fearnley CJ, Roderick HL, Bootman MD. Calcium signaling in cardiac myocytes. Cold Spring Harb Perspect Biol. 2011;3(11):a004242.",
"volume": "3",
"year": "2011"
},
{
"DOI": "10.1146/annurev.physiol.70.113006.100455",
"author": "DM Bers",
"doi-asserted-by": "publisher",
"first-page": "23",
"journal-title": "Annu Rev Physiol",
"key": "3485_CR47",
"unstructured": "Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23–49.",
"volume": "70",
"year": "2008"
},
{
"DOI": "10.1196/annals.1341.008",
"author": "DM Bers",
"doi-asserted-by": "publisher",
"first-page": "86",
"journal-title": "Ann N Y Acad Sci",
"key": "3485_CR48",
"unstructured": "Bers DM, Guo T. Calcium signaling in cardiac ventricular myocytes. Ann N Y Acad Sci. 2005;1047:86–98.",
"volume": "1047",
"year": "2005"
},
{
"DOI": "10.1038/s41591-021-01283-z",
"author": "A Nalbandian",
"doi-asserted-by": "publisher",
"first-page": "601",
"issue": "4",
"journal-title": "Nat Med",
"key": "3485_CR49",
"unstructured": "Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–15.",
"volume": "27",
"year": "2021"
},
{
"DOI": "10.3390/biomedicines11030790",
"author": "A Palazzuoli",
"doi-asserted-by": "publisher",
"first-page": "790",
"issue": "3",
"journal-title": "Biomedicines",
"key": "3485_CR50",
"unstructured": "Palazzuoli A, Beltrami M, McCullough PA. Acute COVID-19 management in heart failure patients: a specific setting requiring detailed inpatient and outpatient hospital care. Biomedicines. 2023;11(3):790.",
"volume": "11",
"year": "2023"
},
{
"DOI": "10.1038/s42003-022-03986-6",
"author": "J-Y Zhu",
"doi-asserted-by": "publisher",
"first-page": "1039",
"issue": "1",
"journal-title": "Commun Biol",
"key": "3485_CR51",
"unstructured": "Zhu J-Y, Wang G, Huang X, Lee H, Lee J-G, Yang P, et al. SARS-CoV-2 Nsp6 damages Drosophila heart and mouse cardiomyocytes through MGA/MAX complex-mediated increased glycolysis. Commun Biol. 2022;5(1):1039.",
"volume": "5",
"year": "2022"
},
{
"DOI": "10.1038/s41418-021-00916-7",
"author": "X Sun",
"doi-asserted-by": "publisher",
"first-page": "1240",
"issue": "6",
"journal-title": "Cell Death Differ",
"key": "3485_CR52",
"unstructured": "Sun X, Liu Y, Huang Z, Xu W, Hu W, Yi L, et al. SARS-CoV-2 non-structural protein 6 triggers NLRP3-dependent pyroptosis by targeting ATP6AP1. Cell Death Differ. 2022;29(6):1240–54.",
"volume": "29",
"year": "2022"
},
{
"DOI": "10.1038/s41418-022-00928-x",
"author": "Y Yang",
"doi-asserted-by": "publisher",
"first-page": "1395",
"issue": "7",
"journal-title": "Cell Death Differ",
"key": "3485_CR53",
"unstructured": "Yang Y, Wu Y, Meng X, Wang Z, Younis M, Liu Y, et al. SARS-CoV-2Membrane protein causes the mitochondrial apoptosis and pulmonary edema via targeting BOK. Cell Death Differ. 2022;29(7):1395–408.",
"volume": "29",
"year": "2022"
},
{
"DOI": "10.1016/j.freeradbiomed.2016.07.022",
"author": "M Zhuo",
"doi-asserted-by": "publisher",
"first-page": "20",
"journal-title": "Free Radic Biol Med",
"key": "3485_CR54",
"unstructured": "Zhuo M, Gorgun MF, Englander EW. Augmentation of glycolytic metabolism by meclizine is indispensable for protection of dorsal root ganglion neurons from hypoxia-induced mitochondrial compromise. Free Radic Biol Med. 2016;99:20–31.",
"volume": "99",
"year": "2016"
}
],
"reference-count": 54,
"references-count": 54,
"relation": {},
"resource": {
"primary": {
"URL": "https://stemcellres.biomedcentral.com/articles/10.1186/s13287-023-03485-3"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [
"Cell Biology",
"Biochemistry, Genetics and Molecular Biology (miscellaneous)",
"Molecular Medicine",
"Medicine (miscellaneous)"
],
"subtitle": [],
"title": "SARS-CoV-2 viral genes Nsp6, Nsp8, and M compromise cellular ATP levels to impair survival and function of human pluripotent stem cell-derived cardiomyocytes",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy",
"volume": "14"
}