Conv. Plasma
Nigella Sativa

All ivermectin studies
Meta analysis
study COVID-19 treatment researchIvermectinIvermectin (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Mechanistic insights into the inhibitory activity of FDA approved ivermectin against SARS-CoV-2: old drug with new implications

Qureshi et al., Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1906750
May 2021  
  Source   PDF   All Studies   Meta AnalysisMeta
Ivermectin for COVID-19
4th treatment shown to reduce risk in August 2020
*, now with p < 0.00000000001 from 104 studies, recognized in 22 countries.
No treatment is 100% effective. Protocols combine treatments. * >10% efficacy, ≥3 studies.
4,300+ studies for 75 treatments.
In Silico study showing inhibition of importin-α1 by ivermectin, which disrupts SARS-CoV-2 replication.
68 preclinical studies support the efficacy of ivermectin for COVID-19:
Ivermectin, better known for antiparasitic activity, is a broad spectrum antiviral with activity against many viruses including H7N766, Dengue32,67,68, HIV-168, Simian virus 4069, Zika32,70,71, West Nile71, Yellow Fever72,73, Japanese encephalitis72, Chikungunya73, Semliki Forest virus73, Human papillomavirus52, Epstein-Barr52, BK Polyomavirus74, and Sindbis virus73.
Ivermectin inhibits importin-α/β-dependent nuclear import of viral proteins66,68,69,75, shows spike-ACE2 disruption at 1nM with microfluidic diffusional sizing33, binds to glycan sites on the SARS-CoV-2 spike protein preventing interaction with blood and epithelial cells and inhibiting hemagglutination36,76, shows dose-dependent inhibition of wildtype and omicron variants31, exhibits dose-dependent inhibition of lung injury56,61, may inhibit SARS-CoV-2 via IMPase inhibition32, may inhibit SARS-CoV-2 induced formation of fibrin clots resistant to degradation5, inhibits SARS-CoV-2 3CLpro49, may inhibit SARS-CoV-2 RdRp activity24, may minimize viral myocarditis by inhibiting NF-κB/p65-mediated inflammation in macrophages55, may be beneficial for COVID-19 ARDS by blocking GSDMD and NET formation77, shows protection against inflammation, cytokine storm, and mortality in an LPS mouse model sharing key pathological features of severe COVID-1954,78, may be beneficial in severe COVID-19 by binding IGF1 to inhibit the promotion of inflammation, fibrosis, and cell proliferation that leads to lung damage4, may minimize SARS-CoV-2 induced cardiac damage35,43, increases Bifidobacteria which play a key role in the immune system79, has immunomodulatory46 and anti-inflammatory65,80 properties, and has an extensive and very positive safety profile81.
Qureshi et al., 5 May 2021, peer-reviewed, 6 authors.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperIvermectinAll
Mechanistic insights into the inhibitory activity of FDA approved ivermectin against SARS-CoV-2: old drug with new implications
Urooj Qureshi, Sonia Mir, Sehrish Naz, Mohammad Nur-E-Alam, Sarfaraz Ahmed, Zaheer Ul-Haq
Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1906750
The novel corona virus has become a great challenge worldwide since 2019, as no drug has been reported yet. Different clinical trials are still under way. Among them is Ivermectin (IVM), an FDA approved drug which was recently reported as a successful candidate to reduce SARS-CoV-2 viral load by inhibiting Importin-a1 (IMP-a1) protein which subsequently affects nuclear transport of viral proteins but its basic binding mode and inhibitory mechanism is unknown. Therefore, we aimed to explore the inhibitory mechanism and binding mode of IVM with IMP-a1 via different computational methods. Initially, comparative docking of IVM was performed against two different binding sites (Nuclear Localization Signal (NLS) major and minor sites) of IMP-a1 to predict the probable binding mode of IVM. Then, classical MD simulation was performed (IVM/NLS-Major site and IVM/NLS-Minor site), to predict its comparative stability dynamics and probable inhibitory mechanism. The stability dynamics and biophysical analysis of both sites highlighted the stable binding of IVM within NLS-Minor site by establishing and maintaining more hydrophobic contacts with crucial residues, required for IMP-a1 inhibition which were not observed in NLS-major site. Altogether, these results recommended the worth of IVM as a possible drug to limit the SARS-CoV-2 viral load and consequently reduces its progression.
Disclosure statement The authors declare no competing financial interests. Author contributions SN and ZU hypothesized and designed the project. SM carried out the benchmarking and docking. UQ set up the MS system and carried out the simulations. SN, SM and UQ drafted the manuscript. ZU, M.N and SA facilitate the research work and reviewed the manuscript. All authors have read and approved the manuscript. ORCID Zaheer Ul-Haq
Abraham, Murtola, Schulz, Smith, Hess et al., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, doi:10.1016/j.softx.2015.06.001
All, Hess, A flexible algorithm for calculating pair interactions on SIMD architectures, Computer Physics Communications, doi:10.1016/j.cpc.2013.06.003
Berendsen, Van Der Spoel, Van Drunen, GROMACS: A message-passing parallel molecular dynamics implementation, Computer Physics Communications, doi:10.1016/0010-4655(95)00042-E
Buonfrate, Salas-Coronas, Muñoz, Maruri, Rodari et al., Multiple-dose versus single-dose ivermectin for Strongyloides stercoralis infection (Strong Treat 1 to 4): A multicentre, open-label, phase 3, randomised controlled superiority trial, The Lancet Infectious Diseases, doi:10.1016/S1473-3099(19)30289-0
Calina, Sarkar, Arsene, Salehi, Docea et al., Recent advances, approaches and challenges in targeting pathways for potential COVID-19 vaccines development, Immunologic Research
Caly, Druce, Catton, Jans, Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Research
Caly, Wagstaff, Jans, Nuclear trafficking of proteins from RNA viruses: Potential target for antivirals?, Antiviral Research, doi:10.1016/j.antiviral.2012.06.008
Canga, Prieto, Li Ebana, Mart Inez, Vega et al., The pharmacokinetics and interactions of ivermectin in humans-A mini-review, The AAPS Journal
Chang, Chen, Grauffel, Pien, Lim et al., Ran pathway-independent regulation of mitotic Golgi disassembly by Importin-a, Nature Communications, doi:10.1038/s41467-019-12207-4
Chen, Hu, Zhang, Jiang, Han et al., Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial, MedRxiv
Chen, Mao, Nassis, Harmer, Ainsworth et al., Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions, Journal of Sport & Health Science, doi:10.1016/j.jshs.2020.02.001
Frieman, Yount, Heise, Kopecky-Bromberg, Palese et al., Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane, Journal of Virology, doi:10.1128/JVI.01012-07
Gao, Tian, Yang, Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, BioScience Trends, doi:10.5582/bst.2020.01047
Gautret, Lagier, Parola, Meddeb, Mailhe et al., Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial, International Journal of Antimicrobial Agents
G€ Otz, Magar, Dornfeld, Giese, Pohlmann et al., Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import, Scientific Reports
Hess, Bekker, Berendsen, Fraaije, Hiscox et al., The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus, Journal of Computational Chemistry, doi:10.1128/JVI.75.1.506-512.2001
Holvey, Valkov, Neal, Stewart, Abell, Selective targeting of the TPX2 site of importin-a using fragment-based ligand design, ChemMedChem, doi:10.1002/cmdc.201500014
Huang, Wang, Li, Ren, Zhao et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, The Lancet, doi:10.1016/S0140-6736(20)30183-5
Jans, Martin, Wagstaff, Inhibitors of nuclear transport, Current Opinion in Cell Biology, doi:10.1016/
Kosyna, Nagel, Kluxen, Kraushaar, Depping, The importin a/b-specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways, Biological Chemistry, doi:10.1515/hsz-2015-0171
Lundberg, Pinkham, Baer, Amaya, Narayanan et al., Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication, Antiviral Research, doi:10.1016/j.antiviral.2013.10.004
Lv, Liu, Wang, Dang, Qiu et al., Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo, Antiviral Research, doi:10.1016/j.antiviral.2018.09.010
Malde, Zuo, Breeze, Stroet, Poger et al., An automated force field topology builder (ATB) and repository: Version 1.0, Journal of Chemical Theory & Computation, doi:10.1021/ct200196m
Nakada, Hirano, Matsuura, Structure of importin-a bound to a non-classical nuclear localization signal of the influenza A virus nucleoprotein, Scientific Reports, doi:10.1038/srep15055
Naz, Baig, Khalil, Ul-Haq, Characterization of cryptic allosteric site at IL-4Ra: New paradigm towards IL-4/IL-4R inhibition, International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2018.10.204
Parrinello, Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied Physics, doi:10.1063/1.328693
Pubchem, None
Rowland, Chauhan, Fang, Pekosz, Kerrigan et al., Intracellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein: absence of nucleolar accumulation during infection and after expression as a recombinant protein in vero cells, Journal of Virology, doi:10.1128/JVI.79.17.11507-11512.2005
Sohrabi, Alsafi, O'neill, Khan, Kerwan et al., World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19), International Journal of Surgery, doi:10.1016/j.ijsu.2020.02.034
Tay, Fraser, Chan, Moreland, Rathore et al., Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4
Timani, Liao, Ye, Zeng, Liu et al., Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus, Molecular Cancer Therapeutics, doi:10.1158/1535-7163.MCT-15-0052
Vardhan, Sahoo, Searching inhibitors for three important proteins of COVID-19 through molecular docking studies
Wagstaff, Rawlinson, Hearps, Jans, An AlphaScreenV R -based assay for high-throughput screening for specific inhibitors of nuclear import, Journal of Biomolecular Screening, doi:10.1177/1087057110390360
Wagstaff, Sivakumaran, Heaton, Harrich, Jans, Ivermectin is a specific inhibitor of importin a/b-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus, Biochemical Journal, doi:10.1042/BJ20120150
Who ; Wulan, Heydet, Walker, Gahan, Ghildyal, Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses, Frontiers in Microbiology, doi:10.3389/fmicb.2015.00553
Wurm, Chen, Hodgson, Britton, Brooks et al., Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division, Journal of Virology, doi:10.1128/JVI.75.19.9345-9356.2001
Yang, Xu, Gong, Liu, Cui, Novel somatic alterations underlie Chinese papillary thyroid carcinoma, Cancer Biomarkers
Zhu, Zhang, Wang, Li, Yang et al., A novel coronavirus from patients with pneumonia in China, 2019, New England Journal of Medicine, doi:10.1056/NEJMoa2001017
{ 'indexed': {'date-parts': [[2023, 10, 9]], 'date-time': '2023-10-09T10:54:10Z', 'timestamp': 1696848850354}, 'reference-count': 42, 'publisher': 'Informa UK Limited', 'issue': '17', 'funder': [ { 'DOI': '10.13039/501100002383', 'name': 'King Saud University', 'doi-asserted-by': 'publisher', 'award': ['RGP-1438-043']}], 'content-domain': {'domain': [''], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2022, 11, 22]]}, 'DOI': '10.1080/07391102.2021.1906750', 'type': 'journal-article', 'created': {'date-parts': [[2021, 5, 6]], 'date-time': '2021-05-06T14:48:13Z', 'timestamp': 1620312493000}, 'page': '8100-8111', 'update-policy': '', 'source': 'Crossref', 'is-referenced-by-count': 2, 'title': 'Mechanistic insights into the inhibitory activity of FDA approved ivermectin against SARS-CoV-2: ' 'old drug with new implications', 'prefix': '10.1080', 'volume': '40', 'author': [ { 'given': 'Urooj', 'family': 'Qureshi', 'sequence': 'first', 'affiliation': [ { 'name': 'H.E.J. Research Institute of Chemistry, ICCBS, University of ' 'Karachi, Karachi, Pakistan'}]}, { 'given': 'Sonia', 'family': 'Mir', 'sequence': 'additional', 'affiliation': [ { 'name': 'H.E.J. Research Institute of Chemistry, ICCBS, University of ' 'Karachi, Karachi, Pakistan'}]}, { 'given': 'Sehrish', 'family': 'Naz', 'sequence': 'additional', 'affiliation': [ { 'name': 'Dr. Panjwani Center for Molecular Medicine and Drug Research, ' 'ICCBS, University of Karachi, Karachi, Pakistan'}]}, { 'given': 'Mohammad', 'family': 'Nur-e-Alam', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Pharmacognosy, King Saud University College of ' 'Pharmacy, Riyadh, Kingdom of Saudi Arabia'}]}, { 'given': 'Sarfaraz', 'family': 'Ahmed', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Pharmacognosy, King Saud University College of ' 'Pharmacy, Riyadh, Kingdom of Saudi Arabia'}]}, { 'ORCID': '', 'authenticated-orcid': False, 'given': 'Zaheer', 'family': 'Ul-Haq', 'sequence': 'additional', 'affiliation': [ { 'name': 'H.E.J. Research Institute of Chemistry, ICCBS, University of ' 'Karachi, Karachi, Pakistan'}, { 'name': 'Dr. Panjwani Center for Molecular Medicine and Drug Research, ' 'ICCBS, University of Karachi, Karachi, Pakistan'}]}], 'member': '301', 'published-online': {'date-parts': [[2021, 5, 5]]}, 'reference': [ {'key': 'CIT0001', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.softx.2015.06.001'}, {'key': 'CIT0002', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0010-4655(95)00042-E'}, {'key': 'CIT0003', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S1473-3099(19)30289-0'}, { 'issue': '1', 'key': 'CIT0004', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1007/s12026-020-09115-x', 'volume': '68', 'author': 'Calina D.', 'year': '2020', 'journal-title': 'Immunologic Research'}, {'key': 'CIT0005', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2020.104787'}, {'key': 'CIT0006', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2012.06.008'}, {'key': 'CIT0007', 'doi-asserted-by': 'publisher', 'DOI': '10.1208/s12248-007-9000-9'}, {'key': 'CIT0008', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-019-12207-4'}, {'key': 'CIT0009', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jshs.2020.02.001'}, {'key': 'CIT0010', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/2020.03.22.20040758'}, {'key': 'CIT0011', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.01012-07'}, {'key': 'CIT0012', 'doi-asserted-by': 'publisher', 'DOI': '10.5582/bst.2020.01047'}, { 'key': 'CIT0013', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ijantimicag.2020.105949'}, { 'issue': '1', 'key': 'CIT0014', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1038/s41598-016-0001-8', 'volume': '6', 'author': 'Götz V.', 'year': '2016', 'journal-title': 'Scientific Reports'}, { 'key': 'CIT0015', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H'}, {'key': 'CIT0016', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.75.1.506-512.2001'}, {'key': 'CIT0017', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/cmdc.201500014'}, {'key': 'CIT0018', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0140-6736(20)30183-5'}, {'key': 'CIT0019', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/'}, {'key': 'CIT0020', 'doi-asserted-by': 'publisher', 'DOI': '10.1515/hsz-2015-0171'}, {'key': 'CIT0021', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2013.10.004'}, {'key': 'CIT0022', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2018.09.010'}, {'key': 'CIT0023', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/ct200196m'}, { 'key': 'CIT0024', 'unstructured': 'Molecular Operating Environment (MOE). (2021). 2019.01; Chemical ' 'Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, ' 'Canada, H3A 2R7.'}, {'key': 'CIT0025', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/srep15055'}, {'key': 'CIT0026', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ijbiomac.2018.10.204'}, {'key': 'CIT0027', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cpc.2013.06.003'}, {'key': 'CIT0028', 'doi-asserted-by': 'publisher', 'DOI': '10.1063/1.328693'}, { 'key': 'CIT0029', 'unstructured': 'Pubchem I. N. Retrieved (accessed July 8) from ' ''}, { 'key': 'CIT0030', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.79.17.11507-11512.2005'}, {'key': 'CIT0031', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ijsu.2020.02.034'}, {'key': 'CIT0032', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2013.06.002'}, {'key': 'CIT0033', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.virusres.2005.05.007'}, {'key': 'CIT0034', 'doi-asserted-by': 'publisher', 'DOI': '10.1158/1535-7163.MCT-15-0052'}, { 'key': 'CIT0035', 'unstructured': 'Vardhan, S. & Sahoo, S. K. (2020). Searching inhibitors for three ' 'important proteins of COVID-19 through molecular docking studies. [arXiv ' 'preprint arXiv:200408095].'}, {'key': 'CIT0036', 'doi-asserted-by': 'publisher', 'DOI': '10.1177/1087057110390360'}, {'key': 'CIT0037', 'doi-asserted-by': 'publisher', 'DOI': '10.1042/BJ20120150'}, {'key': 'CIT0038', 'doi-asserted-by': 'publisher', 'DOI': '10.17265/1537-1506/2020.03.002'}, {'key': 'CIT0039', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2015.00553'}, { 'key': 'CIT0040', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.75.19.9345-9356.2001'}, { 'key': 'CIT0041', 'first-page': '1', 'author': 'Yang C.', 'year': '2020', 'journal-title': 'Cancer Biomarkers'}, {'key': 'CIT0042', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2001017'}], 'container-title': 'Journal of Biomolecular Structure and Dynamics', 'original-title': [], 'language': 'en', 'link': [ { 'URL': '', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2022, 12, 26]], 'date-time': '2022-12-26T10:21:11Z', 'timestamp': 1672050071000}, 'score': 1, 'resource': {'primary': {'URL': ''}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2021, 5, 5]]}, 'references-count': 42, 'journal-issue': {'issue': '17', 'published-print': {'date-parts': [[2022, 11, 22]]}}, 'alternative-id': ['10.1080/07391102.2021.1906750'], 'URL': '', 'relation': {}, 'ISSN': ['0739-1102', '1538-0254'], 'subject': [], 'container-title-short': 'Journal of Biomolecular Structure and Dynamics', 'published': {'date-parts': [[2021, 5, 5]]}, 'assertion': [ { 'value': 'The publishing and review policy for this title is described in its Aims & ' 'Scope.', 'order': 1, 'name': 'peerreview_statement', 'label': 'Peer Review Statement'}, { 'value': '', 'URL': '', 'order': 2, 'name': 'aims_and_scope_url', 'label': 'Aim & Scope'}, { 'value': '2020-09-21', 'order': 0, 'name': 'received', 'label': 'Received', 'group': {'name': 'publication_history', 'label': 'Publication History'}}, { 'value': '2021-03-17', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'publication_history', 'label': 'Publication History'}}, { 'value': '2021-05-05', 'order': 3, 'name': 'published', 'label': 'Published', 'group': {'name': 'publication_history', 'label': 'Publication History'}}]}
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop