Analgesics
Antiandrogens
Antihistamines
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19ivm.org COVID-19 treatment researchIvermectinIvermectin (more..)
Metformin Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta Thermotherapy Meta
Melatonin Meta

 

M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import

Kofler et al., iScience, doi:10.1016/j.isci.2025.112105, Apr 2025
Ivermectin for COVID-19
4th treatment shown to reduce risk in August 2020, now with p < 0.00000000001 from 105 studies, recognized in 24 countries.
No treatment is 100% effective. Protocols combine treatments.
5,500+ studies for 122 treatments. c19ivm.org
In Vitro study showing that TAZ/YAP proteins contain an M-motif, a novel type of nuclear localization signal that can inhibit classic protein import and may play a role in viral immune evasion. Authors identified that this M-motif consists of negatively charged amino acids flanking a critical methionine residue, and is present not only in TAZ/YAP but also in several cellular proteins (STAT1, cyclin B1, hnRNP K) and viral proteins (VSV-M, RVFV-NSs, SARS-ORF6, SARS2-ORF6). The M-motif mediates ATP-independent facilitated nuclear import and inhibits classic protein import by binding to RAE1, a nuclear pore protein. Authors demonstrated that TAZ/YAP can inhibit nuclear import of key antiviral factors (IRF3 and NF-κB), similar to viral proteins, suggesting this may contribute to their reported suppressive effect on antiviral responses.
Notably, ivermectin at standard concentrations (25 μM) attenuated nuclear accumulation of the host co-activators TAZ/YAP while sparing M-motif–mediated import, a mechanism that could relieve TAZ/YAP-linked suppression of IRF3 and NF-κB antiviral signaling.
74 preclinical studies support the efficacy of ivermectin for COVID-19:
Ivermectin, better known for antiparasitic activity, is a broad spectrum antiviral with activity against many viruses including H7N771, Dengue37,72,73, HIV-173, Simian virus 4074, Zika37,75,76, West Nile76, Yellow Fever77,78, Japanese encephalitis77, Chikungunya78, Semliki Forest virus78, Human papillomavirus57, Epstein-Barr57, BK Polyomavirus79, and Sindbis virus78.
Ivermectin inhibits importin-α/β-dependent nuclear import of viral proteins71,73,74,80, shows spike-ACE2 disruption at 1nM with microfluidic diffusional sizing38, binds to glycan sites on the SARS-CoV-2 spike protein preventing interaction with blood and epithelial cells and inhibiting hemagglutination41,81, shows dose-dependent inhibition of wildtype and omicron variants36, exhibits dose-dependent inhibition of lung injury61,66, may inhibit SARS-CoV-2 via IMPase inhibition37, may inhibit SARS-CoV-2 induced formation of fibrin clots resistant to degradation9, inhibits SARS-CoV-2 3CLpro54, may inhibit SARS-CoV-2 RdRp activity28, may minimize viral myocarditis by inhibiting NF-κB/p65-mediated inflammation in macrophages60, may be beneficial for COVID-19 ARDS by blocking GSDMD and NET formation82, may interfere with SARS-CoV-2's immune evasion via ORF8 binding4, may inhibit SARS-CoV-2 by disrupting CD147 interaction83-86, shows protection against inflammation, cytokine storm, and mortality in an LPS mouse model sharing key pathological features of severe COVID-1959,87, may be beneficial in severe COVID-19 by binding IGF1 to inhibit the promotion of inflammation, fibrosis, and cell proliferation that leads to lung damage8, may minimize SARS-CoV-2 induced cardiac damage40,48, may disrupt SARS-CoV-2 N and ORF6 protein nuclear transport and their suppression of host interferon responses1, reduces TAZ/YAP nuclear import, relieving SARS-CoV-2-driven suppression of IRF3 and NF-κB antiviral pathways35, increases Bifidobacteria which play a key role in the immune system88, has immunomodulatory51 and anti-inflammatory70,89 properties, and has an extensive and very positive safety profile90.
Kofler et al., 18 Apr 2025, peer-reviewed, 5 authors. Contact: michael.kofler@unityhealth.to (corresponding author), michael.kofler@unityhealth.to (corresponding author), andras.kapus@unityhealth.to.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import
Michael Kofler, Shruthi Venugopal, Gary Gill, Caterina Di Ciano-Oliveira, András Kapus
iScience, doi:10.1016/j.isci.2025.112105
iScience M-Motif, a potential non-conventional NLS in YAP/ TAZ and other cellular and viral proteins that inhibits classic protein import
AUTHOR CONTRIBUTIONS M.K. participated in the conceptualization of the project, developed the experimental approaches, generated the majority of the reagents, designed, and performed the majority of the experiments, analyzed the results, and wrote iScience 28, 112105, April 18, 2025 DECLARATION OF INTERESTS The authors declare no competing interests. STAR+METHODS Detailed methods are provided in the online version of this paper and include the following: Cells Tissue culture media and reagents were from Thermo Fisher/Life Technologies. Culture media was supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin, and cells were grown in a humidified atmosphere containing 5% CO2. LLC-PK1, a kidney tubule epithelial cell line (male) was a gift from R.C. Harris, Vanderbilt University School of Medicine and was cultured in low-glucose DMEM as described in. 58 HEK (HEK293T Cat# CRL-3216, RRID:CVCL_0063), a human epitheliallike embryonic kidney cell line (female) was a gift from Gagan Gupta (Toronto Metropolitan University). These cells were cultured in high-glucose DMEM. hTERT RPE cells, a Telomerase immortalized human retina pigmented epithelial cell line (female) were obtained from the American Type Culture Collection (ATCC Cat# CRL-4000, RRID:CVCL_4388). RPE cells were cultured in DMEM-F12. Where indicated, cells were treated with LMB (20 ng/ml), Rapamycin (1 nM), TNFa (20 ng/ml) or ivermectin (25 mM, or with indicated concentrations) for varying times..
References
Addetia, Lieberman, Phung, Hsiang, Xie et al., SARS-CoV-2 ORF6 Disrupts Bidirectional Nucleocytoplasmic Transport through Interactions with Rae1 and Nup98, MBio
Ahmad, Uttagomol, The Regulation of the Hippo Pathway by Intercellular Junction Proteins, Life
Aragona, Panciera, Manfrin, Giulitti, Michielin et al., A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors, Cell
Awasthi, Liongue, Ward, STAT proteins: a kaleidoscope of canonical and non-canonical functions in immunity and cancer, J. Hematol. Oncol
Bayliss, Littlewood, Stewart, Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking, Cell
Bergqvist, Croy, Kjaergaard, Huxford, Ghosh et al., Thermodynamics reveal that helix four in the NLS of NF-kappaB p65 anchors IkappaBalpha, forming a very stable complex, J. Mol. Biol
Bialik, Ding, Speight, Dan, Miranda et al., Profibrotic epithelial phenotype: a central role for MRTF and TAZ, Sci. Rep
Blower, Nachury, Heald, Weis, A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly, Cell
Bressy, Droby, Maldonado, Steuerwald, Grdzelishvili, Cell Cycle Arrest in G(2)/M Phase Enhances Replication of Interferon-Sensitive Cytoplasmic RNA Viruses via Inhibition of Antiviral Gene Expression, J. Virol
Cai, Wang, Meng, Mechanoregulation of YAP and TAZ in Cellular Homeostasis and Disease Progression, Front. Cell Dev. Biol
Chan, Huang, Liu, Huang, The transactivation domain of heterogeneous nuclear ribonucleoprotein K overlaps its nuclear shuttling domain, Int. J. Biochem. Cell Biol
Chan, Lim, Loo, Chong, Huang et al., TEADs mediate nuclear retention of TAZ to promote oncogenic transformation, J. Biol. Chem
Chen, Fischle, Verdin, Greene, Duration of nuclear NF-kappaB action regulated by reversible acetylation, Science
Cheon, Stark, Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes, Proc. Natl. Acad. Sci
Couzens, Knight, Kean, Teo, Weiss et al., Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions, Sci. Signal
Dasgupta, Mccollum, Control of cellular responses to mechanical cues through YAP/TAZ regulation, J. Biol. Chem
Deng, Lu, Li, Wu, Zhang et al., Reciprocal inhibition of YAP/TAZ and NF-kappaB regulates osteoarthritic cartilage degradation, Nat. Commun
Dey, Varelas, Guan, Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine, Nat. Rev. Drug Discov
Dupont, Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction, Exp. Cell Res
Ege, Dowbaj, Jiang, Howell, Hooper et al., Quantitative Analysis Reveals that Actin and Src-Family Kinases Regulate Nuclear YAP1 and Its Export, Cell Syst
Fagerlund, Kinnunen, Kohler, Julkunen, Melen, NF-kappaB is transported into the nucleus by importin alpha3 and importin alpha4, J. Biol. Chem
Fan, Sebe, Pe ´terfi, Masszi, Thirone et al., Cell contact-dependent regulation of epithelial-myofibroblast transition via the rho-rho kinase-phospho-myosin pathway, Mol. Biol. Cell
Faria, Chakraborty, Levay, Barber, Ezelle et al., VSV disrupts the Rae1/mrnp41 mRNA nuclear export pathway, Mol. Cell
Feng, Tian, Wang, Zhang, Lin et al., Molecular mechanism underlying selective inhibition of mRNA nuclear export by herpesvirus protein ORF10, Proc. Natl. Acad. Sci. USA
Franklin, Wu, Guan, Insights into recent findings and clinical application of YAP and TAZ in cancer, Nat. Rev. Cancer
Freeman, Morrison, 14-3-3 Proteins: diverse functions in cell proliferation and cancer progression, Semin. Cell Dev. Biol
Frieman, Yount, Heise, Kopecky-Bromberg, Palese et al., Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane, J. Virol
Furukawa, Yamashita, Sakurai, Ohno, The Epithelial Circumferential Actin Belt Regulates YAP/TAZ through Nucleocytoplasmic Shuttling of Merlin, Cell Rep
Gao, Tian, Zhu, Li, Hao et al., Structural basis for Sarbecovirus ORF6 mediated blockage of nucleocytoplasmic transport, Nat. Commun
Garcı ´a-Garcı ´a, Sa ´nchez-Perales, Jarabo, Calvo, Huyton et al., Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP, Nat. Commun
Gavet, Pines, Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis, J. Cell Biol
Gong, Kim, Xiao, Du, Xie et al., A Herpesvirus Protein Selectively Inhibits Cellular mRNA Nuclear Export, Cell Host Microbe
Gordon, Jang, Bouhaddou, Xu, Obernier et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature
Hagting, Jackman, Simpson, Pines, Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylationdependent nuclear import signal, Curr. Biol
Halder, Dupont, Piccolo, Transduction of mechanical and cytoskeletal cues by YAP and TAZ, Nat. Rev. Mol. Cell Biol
Hall, Gueda ´n, Yap, Young, Harvey et al., SARS-CoV-2 ORF6 disrupts innate immune signalling by inhibiting cellular mRNA export, PLoS Pathog
Hayden, Ghosh, Regulation of NF-kappaB by TNF family cytokines, Semin. Immunol
Her, Lund, Dahlberg, Inhibition of Ran guanosine triphosphatase-dependent nuclear transport by the matrix protein of vesicular stomatitis virus, Science
Hussain, Gallagher, SARS-coronavirus protein 6 conformations required to impede protein import into the nucleus, Virus Res
Huxford, Ghosh, A structural guide to proteins of the NF-kappaB signaling module, Cold Spring Harb. Perspect. Biol
Jahanshahi, Hsiao, Jenny, Pfleger, The Hippo Pathway Targets Rae1 to Regulate Mitosis and Organ Size and to Feed Back to Regulate Upstream Components Merlin, Hippo, and Warts, PLoS Genet
Kanai, Marignani, Sarbassova, Yagi, Hall et al., TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins, EMBO J
Kato, Ikliptikawati, Kobayashi, Kondo, Lim et al., Overexpression of SARS-CoV-2 protein ORF6 dislocates RAE1 and NUP98 from the nuclear pore complex, Biochem. Biophys. Res. Commun
Kim, Kwon, Shin, Song, Lee et al., MAML1/2 promote YAP/TAZ nuclear localization and tumorigenesis, Proc. Natl. Acad. Sci. USA
Kimura, Konno, Uriu, Hopfensperger, Sauter et al., Sarbecovirus ORF6 proteins hamper induction of interferon signaling, Cell Rep
Kofler, Kapus, Nuclear Import and Export of YAP and TAZ, Cancers
Kofler, Kapus, Nucleocytoplasmic Shuttling of the Mechanosensitive Transcription Factors MRTF and YAP/TAZ, Methods Mol. Biol
Kofler, Speight, Little, Di Ciano-Oliveira, Sza ´szi et al., Mediated nuclear import and export of TAZ and the underlying molecular requirements, Nat. Commun
Krystkowiak, Davey, SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions, Nucleic Acids Res
Kwon, Kim, Jho, Role of the Hippo pathway and mechanisms for controlling cellular localization of YAP/TAZ, FEBS J
Lei, Dong, Ma, Wang, Xiao et al., Activation and evasion of type I interferon responses by SARS-CoV-2, Nat. Commun
Levy, Darnell, Jr, Stats: transcriptional control and biological impact, Nat. Rev. Mol. Cell Biol
Li, Wen, Guo, Yang, Yang et al., Molecular Mechanism of SARS-CoVs Orf6 Targeting the Rae1-Nup98 Complex to Compete With mRNA Nuclear Export, Front. Mol. Biosci
Lindqvist, Rodrı ´guez-Bravo, Medema, The decision to enter mitosis: feedback and redundancy in the mitotic entry network, J. Cell Biol
Liu, Lagares, Choi, Stopfer, Marinkovi C et al., Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis, Am. J. Physiol. Lung Cell. Mol. Physiol
Liu, Zhou, Yuan, Ni, Liu et al., Two novel STAT1 mutations cause Mendelian susceptibility to mycobacterial disease, Biochem. Biophys. Res. Commun
Ma, Meng, Chen, Guan, The Hippo Pathway: Biology and Pathophysiology, Annu. Rev. Biochem
Magico, Bell, Identification of a classical bipartite nuclear localization signal in the Drosophila TEA/ATTS protein scalloped, PLoS One
Makio, Zhang, Love, Mast, Liu et al., SARS-CoV-2 Orf6 is positioned in the nuclear pore complex by Rae1 to inhibit nucleocytoplasmic transport, Mol. Biol. Cell
Mana-Capelli, Paramasivam, Dutta, Mccollum, Angiomotins link F-actin architecture to Hippo pathway signaling, Mol. Biol. Cell
Manning, Dent, Kondo, Zhao, Plachta et al., Dynamic Fluctuations in Subcellular Localization of the Hippo Pathway Effector Yorkie In Vivo, Curr. Biol
Manning, Kroeger, Harvey, The regulation of Yorkie, YAP and TAZ: new insights into the Hippo pathway, Development
Marg, Shan, Meyer, Meissner, Brandenburg et al., Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat1, J. Cell Biol
Masszi, Speight, Charbonney, Lodyga, Nakano et al., Fate-determining mechanisms in epithelial-myofibroblast transition: major inhibitory role for Smad3, J. Cell Biol
Mcbride, Banninger, Mcdonald, Reich, Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha, EMBO J
Mercurio, Zhu, Murray, Shevchenko, Bennett et al., IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation, Science
Meyer, Begitt, Lo ¨dige, Van Rossum, Vinkemeier, Constitutive and IFN-gamma-induced nuclear import of STAT1 proceed through independent pathways, EMBO J
Michael, Eder, Dreyfuss, The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein, EMBO J
Miorin, Kehrer, Sanchez-Aparicio, Zhang, Cohen et al., SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling, Proc. Natl. Acad. Sci. USA
Miranda, Bialik, Speight, Dan, Yeung et al., TGF-beta1 regulates the expression and transcriptional activity of TAZ protein via a Smad3-independent, myocardin-related transcription factor-mediated mechanism, J. Biol. Chem
Miyamoto, Itoh, Suzuki, Tanaka, Sakai et al., SARS-CoV-2 ORF6 disrupts nucleocytoplasmic trafficking to advance viral replication, Commun. Biol
Moore, Yang, Truant, Kornbluth, Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1, J. Cell Biol
Moya, Halder, Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine, Nat. Rev. Mol. Cell Biol
Nagashima, Maruyama, Honda, Kondoh, Osada et al., CSE1L promotes nuclear accumulation of transcriptional coactivator TAZ and enhances invasiveness of human cancer cells, J. Biol. Chem
Oughtred, Rust, Chang, Breitkreutz, Stark et al., The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions, Protein Sci
Panciera, Azzolin, Cordenonsi, Piccolo, Mechanobiology of YAP and TAZ in physiology and disease, Nat. Rev. Mol. Cell Biol
Pearson, Huang, Pacal, Mccurdy, Lu et al., Binary pan-cancer classes with distinct vulnerabilities defined by pro-or anti-cancer YAP/ TEAD activity, Cancer Cell
Petersen, Her, Dahlberg, Multiple vesiculoviral matrix proteins inhibit both nuclear export and import, Proc. Natl. Acad. Sci
Petersen, Her, Varvel, Lund, Dahlberg, The matrix protein of vesicular stomatitis virus inhibits nucleocytoplasmic transport when it is in the nucleus and associated with nuclear pore complexes, Mol. Cell Biol
Pettit Kneller, Connor, Lyles, hnRNPs Relocalize to the cytoplasm following infection with vesicular stomatitis virus, J. Virol
Piccolo, Panciera, Contessotto, Cordenonsi, YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches, Nat. Cancer
Pines, Hunter, Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport, J. Cell Biol
Pines, Hunter, The differential localization of human cyclins A and B is due to a cytoplasmic retention signal in cyclin B, EMBO J
Pinol-Roma, Dreyfuss, hnRNP proteins: localization and transport between the nucleus and the cytoplasm, Trends Cell Biol
Pocaterra, Romani, Dupont, YAP/TAZ functions and their regulation at a glance, J. Cell Sci
Quan, Seo, Blobel, Ren, Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1 * Nup98), Proc. Natl. Acad. Sci
Redondo, Madan, Alvarez, Carrasco, Mantcheva et al., Disruption of the FG nucleoporin NUP98 causes selective changes in nuclear pore complex stoichiometry and function, Proc. Natl. Acad. Sci
Santinon, Pocaterra, Dupont, Control of YAP/TAZ Activity by Metabolic and Nutrient-Sensing Pathways, Trends Cell Biol
Schmidt, Gorlich, Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity, Elife
Schwoebel, Ho, Moore, The mechanism of inhibition of Ran-dependent nuclear transport by cellular ATP depletion, J. Cell Biol
Sidor, Borreguero-Munoz, Fletcher, Elbediwy, Guillermin et al., Mask family proteins ANKHD1 and ANKRD17 regulate YAP nuclear import and stability, Elife
Sorrentino, Ruggeri, Specchia, Cordenonsi, Mano et al., Metabolic control of YAP and TAZ by the mevalonate pathway, Nat. Cell Biol
Speight, Kofler, Szaszi, Kapus, Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFbeta-regulated Smad3, Nat. Commun
Stark, Darnell, Jr, The JAK-STAT pathway at twenty, Immunity
Stirling, Swain-Bowden, Lucas, Carpenter, Cimini et al., CellProfiler 4: improvements in speed, utility and usability, BMC Bioinformatics
Strauss, Harrison, Coelho, Yata, Zernicka-Goetz et al., Cyclin B1 is essential for mitosis in mouse embryos, and its nuclear export sets the time for mitosis, J. Cell Biol
Su, Chen, Qi, Shi, Feng et al., A Mini-Review on Cell Cycle Regulation of Coronavirus Infection, Front. Vet. Sci
Sui, Li, Zhao, Zhao, Hao et al., Host cell cycle checkpoint as antiviral target for SARS-CoV-2 revealed by integrative transcriptome and proteome analyses, Signal Transduct. Target. Ther
Szeto, Narimatsu, Lu, He, Sidiqi et al., YAP/ TAZ Are Mechanoregulators of TGF-beta-Smad Signaling and Renal Fibrogenesis, J. Am. Soc. Nephrol
Takizawa, Morgan, Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C, Curr. Opin. Cell Biol
Takizawa, Weis, Morgan, Ran-independent nuclear import of cyclin B1-Cdc2 by importin beta, Proc. Natl. Acad. Sci
Varble, Ried, Hammond, Marquis, Woodruff et al., The vesicular stomatitis virus matrix protein inhibits NF-kappaB activation in mouse L929 cells, Virology
Varelas, Samavarchi-Tehrani, Narimatsu, Weiss, Cockburn et al., The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGFbeta-SMAD pathway, Dev. Cell
Von Kobbe, Van Deursen, Rodrigues, Sitterlin, Bachi et al., Vesicular stomatitis virus matrix protein inhibits host cell gene expression by targeting the nucleoporin Nup98, Mol. Cell
Wang, Lu, Yin, Wang, Wu et al., Importin alpha1 Mediates Yorkie Nuclear Import via an N-terminal Non-canonical Nuclear Localization Signal, J. Biol. Chem
Wang, Xie, Chu, Zhang, Yang et al., YAP antagonizes innate antiviral immunity and is targeted for lysosomal degradation through IKKvarepsilon-mediated phosphorylation, Nat. Immunol
Wong, Cheung, Salamango, Decoupling SARS-CoV-2 ORF6 localization and interferon antagonism, J. Cell Sci
Xia, Cao, Xie, Zhang, Chen et al., Evasion of Type I Interferon by SARS-CoV-2, Cell Rep
Xia, Yuan, Wang, Xu, Gu et al., The cancer-testis lncRNA lnc-CTHCC promotes hepatocellular carcinogenesis by binding hnRNP K and activating YAP1 transcription, Nat. Cancer
Yang, Bardes, Moore, Brennan, Powers et al., Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1, Genes Dev
Yang, Wu, Pan, Hua, He et al., WW domains form a folded type of nuclear localization signal to guide YAP1 nuclear import, J. Cell Biol
Yoo, Mitchison, Quantification of nuclear transport inhibition by SARS-CoV-2 ORF6 using a broadly applicable live-cell doseresponse pipeline, doi:10.1101/2021.12.10.472151
Yoo, Mitchison, Quantitative comparison of nuclear transport inhibition by SARS coronavirus ORF6 reveals the importance of oligomerization, Proc. Natl. Acad. Sci
Yu, Zhao, Panupinthu, Jewell, Lian et al., Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling, Cell
Zanconato, Cordenonsi, Piccolo, YAP and TAZ: a signalling hub of the tumour microenvironment, Nat. Rev. Cancer
Zhang, Liu, Zha, Zhao, Yao et al., TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition, J. Biol. Chem
Zhang, Meng, Chen, Plouffe, Wu et al., Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade, Nat. Cell Biol
Zhao, Li, Tumaneng, Wang, Guan, A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP), Genes Dev
Zhao, Wei, Li, Udan, Yang et al., Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control, Genes Dev
Zhao, Ye, Yu, Li, Li et al., TEAD mediates YAP-dependent gene induction and growth control, Genes Dev
DOI record: { "DOI": "10.1016/j.isci.2025.112105", "ISSN": [ "2589-0042" ], "URL": "http://dx.doi.org/10.1016/j.isci.2025.112105", "alternative-id": [ "S2589004225003657" ], "article-number": "112105", "assertion": [ { "label": "This article is maintained by", "name": "publisher", "value": "Elsevier" }, { "label": "Article Title", "name": "articletitle", "value": "M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import" }, { "label": "Journal Title", "name": "journaltitle", "value": "iScience" }, { "label": "CrossRef DOI link to publisher maintained version", "name": "articlelink", "value": "https://doi.org/10.1016/j.isci.2025.112105" }, { "label": "Content Type", "name": "content_type", "value": "article" }, { "label": "Copyright", "name": "copyright", "value": "© 2025 The Authors. Published by Elsevier Inc." } ], "author": [ { "affiliation": [], "family": "Kofler", "given": "Michael", "sequence": "first" }, { "affiliation": [], "family": "Venugopal", "given": "Shruthi", "sequence": "additional" }, { "affiliation": [], "family": "Gill", "given": "Gary", "sequence": "additional" }, { "affiliation": [], "family": "Di Ciano-Oliveira", "given": "Caterina", "sequence": "additional" }, { "affiliation": [], "family": "Kapus", "given": "András", "sequence": "additional" } ], "container-title": "iScience", "container-title-short": "iScience", "content-domain": { "crossmark-restriction": true, "domain": [ "cell.com", "elsevier.com", "sciencedirect.com" ] }, "created": { "date-parts": [ [ 2025, 2, 26 ] ], "date-time": "2025-02-26T16:24:18Z", "timestamp": 1740587058000 }, "deposited": { "date-parts": [ [ 2025, 4, 23 ] ], "date-time": "2025-04-23T08:21:24Z", "timestamp": 1745396484000 }, "funder": [ { "DOI": "10.13039/501100000024", "award": [ "PJT 148608", "PJT 162360" ], "doi-asserted-by": "publisher", "id": [ { "asserted-by": "publisher", "id": "10.13039/501100000024", "id-type": "DOI" } ], "name": "Canadian Institutes of Health Research" }, { "DOI": "10.13039/501100000191", "doi-asserted-by": "publisher", "id": [ { "asserted-by": "publisher", "id": "10.13039/501100000191", "id-type": "DOI" } ], "name": "Kidney Foundation of Canada" }, { "DOI": "10.13039/501100000038", "award": [ "RGPIN - 2019-05222" ], "doi-asserted-by": "publisher", "id": [ { "asserted-by": "publisher", "id": "10.13039/501100000038", "id-type": "DOI" } ], "name": "Natural Sciences and Engineering Research Council of Canada" } ], "indexed": { "date-parts": [ [ 2025, 4, 23 ] ], "date-time": "2025-04-23T08:40:08Z", "timestamp": 1745397608901, "version": "3.40.4" }, "is-referenced-by-count": 0, "issue": "4", "issued": { "date-parts": [ [ 2025, 4 ] ] }, "journal-issue": { "issue": "4", "published-print": { "date-parts": [ [ 2025, 4 ] ] } }, "language": "en", "license": [ { "URL": "https://www.elsevier.com/tdm/userlicense/1.0/", "content-version": "tdm", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 4, 1 ] ], "date-time": "2025-04-01T00:00:00Z", "timestamp": 1743465600000 } }, { "URL": "https://www.elsevier.com/legal/tdmrep-license", "content-version": "tdm", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 4, 1 ] ], "date-time": "2025-04-01T00:00:00Z", "timestamp": 1743465600000 } }, { "URL": "http://creativecommons.org/licenses/by-nc-nd/4.0/", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 2, 21 ] ], "date-time": "2025-02-21T00:00:00Z", "timestamp": 1740096000000 } } ], "link": [ { "URL": "https://api.elsevier.com/content/article/PII:S2589004225003657?httpAccept=text/xml", "content-type": "text/xml", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://api.elsevier.com/content/article/PII:S2589004225003657?httpAccept=text/plain", "content-type": "text/plain", "content-version": "vor", "intended-application": "text-mining" } ], "member": "78", "original-title": [], "page": "112105", "prefix": "10.1016", "published": { "date-parts": [ [ 2025, 4 ] ] }, "published-print": { "date-parts": [ [ 2025, 4 ] ] }, "publisher": "Elsevier BV", "reference": [ { "DOI": "10.1242/jcs.230425", "article-title": "YAP/TAZ functions and their regulation at a glance", "author": "Pocaterra", "doi-asserted-by": "crossref", "journal-title": "J. Cell Sci.", "key": "10.1016/j.isci.2025.112105_bib1", "volume": "133", "year": "2020" }, { "DOI": "10.1038/s41580-018-0086-y", "article-title": "Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine", "author": "Moya", "doi-asserted-by": "crossref", "first-page": "211", "journal-title": "Nat. Rev. Mol. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib2", "volume": "20", "year": "2019" }, { "DOI": "10.1038/s41568-019-0168-y", "article-title": "YAP and TAZ: a signalling hub of the tumour microenvironment", "author": "Zanconato", "doi-asserted-by": "crossref", "first-page": "454", "journal-title": "Nat. Rev. Cancer", "key": "10.1016/j.isci.2025.112105_bib3", "volume": "19", "year": "2019" }, { "article-title": "YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches", "author": "Piccolo", "first-page": "9", "journal-title": "Nat. Cancer", "key": "10.1016/j.isci.2025.112105_bib4", "volume": "4", "year": "2023" }, { "DOI": "10.1038/s41568-023-00579-1", "article-title": "Insights into recent findings and clinical application of YAP and TAZ in cancer", "author": "Franklin", "doi-asserted-by": "crossref", "first-page": "512", "journal-title": "Nat. Rev. Cancer", "key": "10.1016/j.isci.2025.112105_bib5", "volume": "23", "year": "2023" }, { "DOI": "10.1152/ajplung.00300.2014", "article-title": "Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis", "author": "Liu", "doi-asserted-by": "crossref", "first-page": "L344", "journal-title": "Am. J. Physiol. Lung Cell. Mol. Physiol.", "key": "10.1016/j.isci.2025.112105_bib6", "volume": "308", "year": "2015" }, { "DOI": "10.1038/ncomms11642", "article-title": "Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFbeta-regulated Smad3", "author": "Speight", "doi-asserted-by": "crossref", "journal-title": "Nat. Commun.", "key": "10.1016/j.isci.2025.112105_bib7", "volume": "7", "year": "2016" }, { "DOI": "10.1038/s41573-020-0070-z", "article-title": "Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine", "author": "Dey", "doi-asserted-by": "crossref", "first-page": "480", "journal-title": "Nat. Rev. Drug Discov.", "key": "10.1016/j.isci.2025.112105_bib8", "volume": "19", "year": "2020" }, { "DOI": "10.1038/s41598-019-40764-7", "article-title": "Profibrotic epithelial phenotype: a central role for MRTF and TAZ", "author": "Bialik", "doi-asserted-by": "crossref", "first-page": "4323", "journal-title": "Sci. Rep.", "key": "10.1016/j.isci.2025.112105_bib9", "volume": "9", "year": "2019" }, { "DOI": "10.1681/ASN.2015050499", "article-title": "YAP/TAZ Are Mechanoregulators of TGF-beta-Smad Signaling and Renal Fibrogenesis", "author": "Szeto", "doi-asserted-by": "crossref", "first-page": "3117", "journal-title": "J. Am. Soc. Nephrol.", "key": "10.1016/j.isci.2025.112105_bib10", "volume": "27", "year": "2016" }, { "DOI": "10.1016/j.devcel.2010.11.012", "article-title": "The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway", "author": "Varelas", "doi-asserted-by": "crossref", "first-page": "831", "journal-title": "Dev. Cell", "key": "10.1016/j.isci.2025.112105_bib11", "volume": "19", "year": "2010" }, { "DOI": "10.1111/febs.16091", "article-title": "Role of the Hippo pathway and mechanisms for controlling cellular localization of YAP/TAZ", "author": "Kwon", "doi-asserted-by": "crossref", "first-page": "5798", "journal-title": "FEBS J.", "key": "10.1016/j.isci.2025.112105_bib12", "volume": "289", "year": "2022" }, { "DOI": "10.1146/annurev-biochem-013118-111829", "article-title": "The Hippo Pathway: Biology and Pathophysiology", "author": "Ma", "doi-asserted-by": "crossref", "first-page": "577", "journal-title": "Annu. Rev. Biochem.", "key": "10.1016/j.isci.2025.112105_bib13", "volume": "88", "year": "2019" }, { "DOI": "10.1016/j.cell.2013.07.042", "article-title": "A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors", "author": "Aragona", "doi-asserted-by": "crossref", "first-page": "1047", "journal-title": "Cell", "key": "10.1016/j.isci.2025.112105_bib14", "volume": "154", "year": "2013" }, { "DOI": "10.3390/life12111792", "article-title": "The Regulation of the Hippo Pathway by Intercellular Junction Proteins", "author": "Ahmad", "doi-asserted-by": "crossref", "journal-title": "Life", "key": "10.1016/j.isci.2025.112105_bib15", "volume": "12", "year": "2022" }, { "DOI": "10.1016/j.cell.2012.06.037", "article-title": "Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling", "author": "Yu", "doi-asserted-by": "crossref", "first-page": "780", "journal-title": "Cell", "key": "10.1016/j.isci.2025.112105_bib16", "volume": "150", "year": "2012" }, { "DOI": "10.1038/ncb2936", "article-title": "Metabolic control of YAP and TAZ by the mevalonate pathway", "author": "Sorrentino", "doi-asserted-by": "crossref", "first-page": "357", "journal-title": "Nat. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib17", "volume": "16", "year": "2014" }, { "DOI": "10.1038/nrm.2017.87", "article-title": "Mechanobiology of YAP and TAZ in physiology and disease", "author": "Panciera", "doi-asserted-by": "crossref", "first-page": "758", "journal-title": "Nat. Rev. Mol. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib18", "volume": "18", "year": "2017" }, { "DOI": "10.1016/j.tcb.2015.11.004", "article-title": "Control of YAP/TAZ Activity by Metabolic and Nutrient-Sensing Pathways", "author": "Santinon", "doi-asserted-by": "crossref", "first-page": "289", "journal-title": "Trends Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib19", "volume": "26", "year": "2016" }, { "DOI": "10.1016/j.yexcr.2015.10.034", "article-title": "Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction", "author": "Dupont", "doi-asserted-by": "crossref", "first-page": "42", "journal-title": "Exp. Cell Res.", "key": "10.1016/j.isci.2025.112105_bib20", "volume": "343", "year": "2016" }, { "DOI": "10.1038/nrm3416", "article-title": "Transduction of mechanical and cytoskeletal cues by YAP and TAZ", "author": "Halder", "doi-asserted-by": "crossref", "first-page": "591", "journal-title": "Nat. Rev. Mol. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib21", "volume": "13", "year": "2012" }, { "DOI": "10.3389/fcell.2021.673599", "article-title": "Mechanoregulation of YAP and TAZ in Cellular Homeostasis and Disease Progression", "author": "Cai", "doi-asserted-by": "crossref", "journal-title": "Front. Cell Dev. Biol.", "key": "10.1016/j.isci.2025.112105_bib22", "volume": "9", "year": "2021" }, { "DOI": "10.1101/gad.1843810", "article-title": "A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP)", "author": "Zhao", "doi-asserted-by": "crossref", "first-page": "72", "journal-title": "Genes Dev.", "key": "10.1016/j.isci.2025.112105_bib23", "volume": "24", "year": "2010" }, { "DOI": "10.1074/jbc.M117.780502", "article-title": "TGF-beta1 regulates the expression and transcriptional activity of TAZ protein via a Smad3-independent, myocardin-related transcription factor-mediated mechanism", "author": "Miranda", "doi-asserted-by": "crossref", "first-page": "14902", "journal-title": "J. Biol. Chem.", "key": "10.1016/j.isci.2025.112105_bib24", "volume": "292", "year": "2017" }, { "DOI": "10.1101/gad.1602907", "article-title": "Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control", "author": "Zhao", "doi-asserted-by": "crossref", "first-page": "2747", "journal-title": "Genes Dev.", "key": "10.1016/j.isci.2025.112105_bib25", "volume": "21", "year": "2007" }, { "DOI": "10.1016/j.semcdb.2011.08.009", "article-title": "14-3-3 Proteins: diverse functions in cell proliferation and cancer progression", "author": "Freeman", "doi-asserted-by": "crossref", "first-page": "681", "journal-title": "Semin. Cell Dev. Biol.", "key": "10.1016/j.isci.2025.112105_bib26", "volume": "22", "year": "2011" }, { "DOI": "10.1091/mbc.e13-11-0701", "article-title": "Angiomotins link F-actin architecture to Hippo pathway signaling", "author": "Mana-Capelli", "doi-asserted-by": "crossref", "first-page": "1676", "journal-title": "Mol. Biol. Cell", "key": "10.1016/j.isci.2025.112105_bib27", "volume": "25", "year": "2014" }, { "DOI": "10.1074/jbc.REV119.007963", "article-title": "Control of cellular responses to mechanical cues through YAP/TAZ regulation", "author": "Dasgupta", "doi-asserted-by": "crossref", "first-page": "17693", "journal-title": "J. Biol. Chem.", "key": "10.1016/j.isci.2025.112105_bib28", "volume": "294", "year": "2019" }, { "DOI": "10.1101/gad.1664408", "article-title": "TEAD mediates YAP-dependent gene induction and growth control", "author": "Zhao", "doi-asserted-by": "crossref", "first-page": "1962", "journal-title": "Genes Dev.", "key": "10.1016/j.isci.2025.112105_bib29", "volume": "22", "year": "2008" }, { "DOI": "10.1074/jbc.M900843200", "article-title": "TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition", "author": "Zhang", "doi-asserted-by": "crossref", "first-page": "13355", "journal-title": "J. Biol. Chem.", "key": "10.1016/j.isci.2025.112105_bib30", "volume": "284", "year": "2009" }, { "DOI": "10.1074/jbc.M901568200", "article-title": "TEADs mediate nuclear retention of TAZ to promote oncogenic transformation", "author": "Chan", "doi-asserted-by": "crossref", "first-page": "14347", "journal-title": "J. Biol. Chem.", "key": "10.1016/j.isci.2025.112105_bib31", "volume": "284", "year": "2009" }, { "DOI": "10.1038/s41467-018-07450-0", "article-title": "Mediated nuclear import and export of TAZ and the underlying molecular requirements", "author": "Kofler", "doi-asserted-by": "crossref", "first-page": "4966", "journal-title": "Nat. Commun.", "key": "10.1016/j.isci.2025.112105_bib32", "volume": "9", "year": "2018" }, { "DOI": "10.1016/j.cub.2018.04.018", "article-title": "Dynamic Fluctuations in Subcellular Localization of the Hippo Pathway Effector Yorkie In Vivo", "author": "Manning", "doi-asserted-by": "crossref", "first-page": "1651", "journal-title": "Curr. Biol.", "key": "10.1016/j.isci.2025.112105_bib33", "volume": "28", "year": "2018" }, { "DOI": "10.1093/emboj/19.24.6778", "article-title": "TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins", "author": "Kanai", "doi-asserted-by": "crossref", "first-page": "6778", "journal-title": "EMBO J.", "key": "10.1016/j.isci.2025.112105_bib34", "volume": "19", "year": "2000" }, { "DOI": "10.3390/cancers15204956", "article-title": "Nuclear Import and Export of YAP and TAZ", "author": "Kofler", "doi-asserted-by": "crossref", "journal-title": "Cancers", "key": "10.1016/j.isci.2025.112105_bib35", "volume": "15", "year": "2023" }, { "DOI": "10.1073/pnas.1917969117", "article-title": "MAML1/2 promote YAP/TAZ nuclear localization and tumorigenesis", "author": "Kim", "doi-asserted-by": "crossref", "first-page": "13529", "journal-title": "Proc. Natl. Acad. Sci. USA", "key": "10.1016/j.isci.2025.112105_bib36", "volume": "117", "year": "2020" }, { "DOI": "10.7554/eLife.48601", "article-title": "Mask family proteins ANKHD1 and ANKRD17 regulate YAP nuclear import and stability", "author": "Sidor", "doi-asserted-by": "crossref", "journal-title": "Elife", "key": "10.1016/j.isci.2025.112105_bib37", "volume": "8", "year": "2019" }, { "DOI": "10.1016/j.jbc.2021.100803", "article-title": "CSE1L promotes nuclear accumulation of transcriptional coactivator TAZ and enhances invasiveness of human cancer cells", "author": "Nagashima", "doi-asserted-by": "crossref", "journal-title": "J. Biol. Chem.", "key": "10.1016/j.isci.2025.112105_bib38", "volume": "297", "year": "2021" }, { "DOI": "10.1038/s41467-022-28693-y", "article-title": "Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP", "author": "García-García", "doi-asserted-by": "crossref", "first-page": "1174", "journal-title": "Nat. Commun.", "key": "10.1016/j.isci.2025.112105_bib39", "volume": "13", "year": "2022" }, { "DOI": "10.1083/jcb.202308013", "article-title": "WW domains form a folded type of nuclear localization signal to guide YAP1 nuclear import", "author": "Yang", "doi-asserted-by": "crossref", "journal-title": "J. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib40", "volume": "223", "year": "2024" }, { "DOI": "10.1016/j.cels.2018.05.006", "article-title": "Quantitative Analysis Reveals that Actin and Src-Family Kinases Regulate Nuclear YAP1 and Its Export", "author": "Ege", "doi-asserted-by": "crossref", "first-page": "692", "journal-title": "Cell Syst.", "key": "10.1016/j.isci.2025.112105_bib41", "volume": "6", "year": "2018" }, { "DOI": "10.1016/j.celrep.2017.07.032", "article-title": "The Epithelial Circumferential Actin Belt Regulates YAP/TAZ through Nucleocytoplasmic Shuttling of Merlin", "author": "Furukawa", "doi-asserted-by": "crossref", "first-page": "1435", "journal-title": "Cell Rep.", "key": "10.1016/j.isci.2025.112105_bib42", "volume": "20", "year": "2017" }, { "DOI": "10.1016/j.chom.2016.10.004", "article-title": "A Herpesvirus Protein Selectively Inhibits Cellular mRNA Nuclear Export", "author": "Gong", "doi-asserted-by": "crossref", "first-page": "642", "journal-title": "Cell Host Microbe", "key": "10.1016/j.isci.2025.112105_bib43", "volume": "20", "year": "2016" }, { "DOI": "10.1073/pnas.151240998", "article-title": "Multiple vesiculoviral matrix proteins inhibit both nuclear export and import", "author": "Petersen", "doi-asserted-by": "crossref", "first-page": "8590", "journal-title": "Proc. Natl. Acad. Sci. USA", "key": "10.1016/j.isci.2025.112105_bib44", "volume": "98", "year": "2001" }, { "DOI": "10.1128/MCB.20.22.8590-8601.2000", "article-title": "The matrix protein of vesicular stomatitis virus inhibits nucleocytoplasmic transport when it is in the nucleus and associated with nuclear pore complexes", "author": "Petersen", "doi-asserted-by": "crossref", "first-page": "8590", "journal-title": "Mol. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib45", "volume": "20", "year": "2000" }, { "DOI": "10.1016/j.virusres.2010.08.017", "article-title": "SARS-coronavirus protein 6 conformations required to impede protein import into the nucleus", "author": "Hussain", "doi-asserted-by": "crossref", "first-page": "299", "journal-title": "Virus Res.", "key": "10.1016/j.isci.2025.112105_bib46", "volume": "153", "year": "2010" }, { "DOI": "10.1073/pnas.2016650117", "article-title": "SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling", "author": "Miorin", "doi-asserted-by": "crossref", "first-page": "28344", "journal-title": "Proc. Natl. Acad. Sci. USA", "key": "10.1016/j.isci.2025.112105_bib47", "volume": "117", "year": "2020" }, { "DOI": "10.1128/mBio.00065-21", "article-title": "SARS-CoV-2 ORF6 Disrupts Bidirectional Nucleocytoplasmic Transport through Interactions with Rae1 and Nup98", "author": "Addetia", "doi-asserted-by": "crossref", "first-page": "10", "journal-title": "MBio", "key": "10.1016/j.isci.2025.112105_bib48", "volume": "12", "year": "2021" }, { "DOI": "10.1242/jcs.259666", "article-title": "Decoupling SARS-CoV-2 ORF6 localization and interferon antagonism", "author": "Wong", "doi-asserted-by": "crossref", "journal-title": "J. Cell Sci.", "key": "10.1016/j.isci.2025.112105_bib49", "volume": "135", "year": "2022" }, { "DOI": "10.1038/s42003-022-03427-4", "article-title": "SARS-CoV-2 ORF6 disrupts nucleocytoplasmic trafficking to advance viral replication", "author": "Miyamoto", "doi-asserted-by": "crossref", "first-page": "483", "journal-title": "Commun. Biol.", "key": "10.1016/j.isci.2025.112105_bib50", "volume": "5", "year": "2022" }, { "DOI": "10.1016/j.celrep.2021.108916", "article-title": "Sarbecovirus ORF6 proteins hamper induction of interferon signaling", "author": "Kimura", "doi-asserted-by": "crossref", "journal-title": "Cell Rep.", "key": "10.1016/j.isci.2025.112105_bib51", "volume": "34", "year": "2021" }, { "DOI": "10.1038/s41467-020-17665-9", "article-title": "Activation and evasion of type I interferon responses by SARS-CoV-2", "author": "Lei", "doi-asserted-by": "crossref", "first-page": "3810", "journal-title": "Nat. Commun.", "key": "10.1016/j.isci.2025.112105_bib52", "volume": "11", "year": "2020" }, { "DOI": "10.1038/ncb3496", "article-title": "Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade", "author": "Zhang", "doi-asserted-by": "crossref", "first-page": "362", "journal-title": "Nat. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib53", "volume": "19", "year": "2017" }, { "DOI": "10.1038/s41467-018-07022-2", "article-title": "Reciprocal inhibition of YAP/TAZ and NF-kappaB regulates osteoarthritic cartilage degradation", "author": "Deng", "doi-asserted-by": "crossref", "first-page": "4564", "journal-title": "Nat. Commun.", "key": "10.1016/j.isci.2025.112105_bib54", "volume": "9", "year": "2018" }, { "DOI": "10.1038/ni.3744", "article-title": "YAP antagonizes innate antiviral immunity and is targeted for lysosomal degradation through IKKvarepsilon-mediated phosphorylation", "author": "Wang", "doi-asserted-by": "crossref", "first-page": "733", "journal-title": "Nat. Immunol.", "key": "10.1016/j.isci.2025.112105_bib55", "volume": "18", "year": "2017" }, { "DOI": "10.1007/978-1-0716-1382-5_15", "article-title": "Nucleocytoplasmic Shuttling of the Mechanosensitive Transcription Factors MRTF and YAP/TAZ", "author": "Kofler", "doi-asserted-by": "crossref", "first-page": "197", "journal-title": "Methods Mol. Biol.", "key": "10.1016/j.isci.2025.112105_bib56", "volume": "2299", "year": "2021" }, { "DOI": "10.1091/mbc.e06-07-0602", "article-title": "Cell contact-dependent regulation of epithelial-myofibroblast transition via the rho-rho kinase-phospho-myosin pathway", "author": "Fan", "doi-asserted-by": "crossref", "first-page": "1083", "journal-title": "Mol. Biol. Cell", "key": "10.1016/j.isci.2025.112105_bib57", "volume": "18", "year": "2007" }, { "DOI": "10.1083/jcb.200906155", "article-title": "Fate-determining mechanisms in epithelial-myofibroblast transition: major inhibitory role for Smad3", "author": "Masszi", "doi-asserted-by": "crossref", "first-page": "383", "journal-title": "J. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib58", "volume": "188", "year": "2010" }, { "DOI": "10.1083/jcb.200111077", "article-title": "The mechanism of inhibition of Ran-dependent nuclear transport by cellular ATP depletion", "author": "Schwoebel", "doi-asserted-by": "crossref", "first-page": "963", "journal-title": "J. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib59", "volume": "157", "year": "2002" }, { "DOI": "10.1093/emboj/21.3.344", "article-title": "Constitutive and IFN-gamma-induced nuclear import of STAT1 proceed through independent pathways", "author": "Meyer", "doi-asserted-by": "crossref", "first-page": "344", "journal-title": "EMBO J.", "key": "10.1016/j.isci.2025.112105_bib60", "volume": "21", "year": "2002" }, { "DOI": "10.1083/jcb.200403057", "article-title": "Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat1", "author": "Marg", "doi-asserted-by": "crossref", "first-page": "823", "journal-title": "J. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib61", "volume": "165", "year": "2004" }, { "DOI": "10.1083/jcb.144.2.213", "article-title": "Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1", "author": "Moore", "doi-asserted-by": "crossref", "first-page": "213", "journal-title": "J. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib62", "volume": "144", "year": "1999" }, { "DOI": "10.1073/pnas.96.14.7938", "article-title": "Ran-independent nuclear import of cyclin B1-Cdc2 by importin beta", "author": "Takizawa", "doi-asserted-by": "crossref", "first-page": "7938", "journal-title": "Proc. Natl. Acad. Sci. USA", "key": "10.1016/j.isci.2025.112105_bib63", "volume": "96", "year": "1999" }, { "DOI": "10.1093/emboj/16.12.3587", "article-title": "The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein", "author": "Michael", "doi-asserted-by": "crossref", "first-page": "3587", "journal-title": "EMBO J.", "key": "10.1016/j.isci.2025.112105_bib64", "volume": "16", "year": "1997" }, { "DOI": "10.1016/j.immuni.2012.03.013", "article-title": "The JAK-STAT pathway at twenty", "author": "Stark", "doi-asserted-by": "crossref", "first-page": "503", "journal-title": "Immunity", "key": "10.1016/j.isci.2025.112105_bib65", "volume": "36", "year": "2012" }, { "DOI": "10.1083/jcb.200812045", "article-title": "The decision to enter mitosis: feedback and redundancy in the mitotic entry network", "author": "Lindqvist", "doi-asserted-by": "crossref", "first-page": "193", "journal-title": "J. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib66", "volume": "185", "year": "2009" }, { "DOI": "10.1016/S0955-0674(00)00149-6", "article-title": "Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C", "author": "Takizawa", "doi-asserted-by": "crossref", "first-page": "658", "journal-title": "Curr. Opin. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib67", "volume": "12", "year": "2000" }, { "DOI": "10.1083/jcb.201612147", "article-title": "Cyclin B1 is essential for mitosis in mouse embryos, and its nuclear export sets the time for mitosis", "author": "Strauss", "doi-asserted-by": "crossref", "first-page": "179", "journal-title": "J. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib68", "volume": "217", "year": "2018" }, { "DOI": "10.1016/0962-8924(93)90135-N", "article-title": "hnRNP proteins: localization and transport between the nucleus and the cytoplasm", "author": "Pinol-Roma", "doi-asserted-by": "crossref", "first-page": "151", "journal-title": "Trends Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib69", "volume": "3", "year": "1993" }, { "DOI": "10.1016/j.biocel.2008.02.005", "article-title": "The transactivation domain of heterogeneous nuclear ribonucleoprotein K overlaps its nuclear shuttling domain", "author": "Chan", "doi-asserted-by": "crossref", "first-page": "2078", "journal-title": "Int. J. Biochem. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib70", "volume": "40", "year": "2008" }, { "DOI": "10.1038/s43018-021-00315-4", "article-title": "The cancer-testis lncRNA lnc-CTHCC promotes hepatocellular carcinogenesis by binding hnRNP K and activating YAP1 transcription", "author": "Xia", "doi-asserted-by": "crossref", "first-page": "203", "journal-title": "Nat. Cancer", "key": "10.1016/j.isci.2025.112105_bib71", "volume": "3", "year": "2022" }, { "DOI": "10.1038/nrm909", "article-title": "Stats: transcriptional control and biological impact", "author": "Levy", "doi-asserted-by": "crossref", "first-page": "651", "journal-title": "Nat. Rev. Mol. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib72", "volume": "3", "year": "2002" }, { "DOI": "10.1186/s13045-021-01214-y", "article-title": "STAT proteins: a kaleidoscope of canonical and non-canonical functions in immunity and cancer", "author": "Awasthi", "doi-asserted-by": "crossref", "first-page": "198", "journal-title": "J. Hematol. Oncol.", "key": "10.1016/j.isci.2025.112105_bib73", "volume": "14", "year": "2021" }, { "DOI": "10.1093/emboj/21.7.1754", "article-title": "Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha", "author": "McBride", "doi-asserted-by": "crossref", "first-page": "1754", "journal-title": "EMBO J.", "key": "10.1016/j.isci.2025.112105_bib74", "volume": "21", "year": "2002" }, { "DOI": "10.1073/pnas.0903487106", "article-title": "Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes", "author": "Cheon", "doi-asserted-by": "crossref", "first-page": "9373", "journal-title": "Proc. Natl. Acad. Sci. USA", "key": "10.1016/j.isci.2025.112105_bib75", "volume": "106", "year": "2009" }, { "DOI": "10.1016/j.bbrc.2021.11.036", "article-title": "Two novel STAT1 mutations cause Mendelian susceptibility to mycobacterial disease", "author": "Liu", "doi-asserted-by": "crossref", "first-page": "124", "journal-title": "Biochem. Biophys. Res. Commun.", "key": "10.1016/j.isci.2025.112105_bib76", "volume": "591", "year": "2022" }, { "DOI": "10.1016/S0960-9822(99)80308-X", "article-title": "Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal", "author": "Hagting", "doi-asserted-by": "crossref", "first-page": "680", "journal-title": "Curr. Biol.", "key": "10.1016/j.isci.2025.112105_bib77", "volume": "9", "year": "1999" }, { "DOI": "10.1002/j.1460-2075.1994.tb06688.x", "article-title": "The differential localization of human cyclins A and B is due to a cytoplasmic retention signal in cyclin B", "author": "Pines", "doi-asserted-by": "crossref", "first-page": "3772", "journal-title": "EMBO J.", "key": "10.1016/j.isci.2025.112105_bib78", "volume": "13", "year": "1994" }, { "DOI": "10.1101/gad.12.14.2131", "article-title": "Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1", "author": "Yang", "doi-asserted-by": "crossref", "first-page": "2131", "journal-title": "Genes Dev.", "key": "10.1016/j.isci.2025.112105_bib79", "volume": "12", "year": "1998" }, { "DOI": "10.1073/pnas.2007774117", "article-title": "Molecular mechanism underlying selective inhibition of mRNA nuclear export by herpesvirus protein ORF10", "author": "Feng", "doi-asserted-by": "crossref", "first-page": "26719", "journal-title": "Proc. Natl. Acad. Sci. USA", "key": "10.1016/j.isci.2025.112105_bib80", "volume": "117", "year": "2020" }, { "article-title": "Molecular Mechanism of SARS-CoVs Orf6 Targeting the Rae1-Nup98 Complex to Compete With mRNA Nuclear Export", "author": "Li", "journal-title": "Front. Mol. Biosci.", "key": "10.1016/j.isci.2025.112105_bib81", "volume": "8", "year": "2021" }, { "DOI": "10.1073/pnas.1409076111", "article-title": "Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1 ∗ Nup98)", "author": "Quan", "doi-asserted-by": "crossref", "first-page": "9127", "journal-title": "Proc. Natl. Acad. Sci. USA", "key": "10.1016/j.isci.2025.112105_bib82", "volume": "111", "year": "2014" }, { "DOI": "10.1038/s41467-022-32489-5", "article-title": "Structural basis for Sarbecovirus ORF6 mediated blockage of nucleocytoplasmic transport", "author": "Gao", "doi-asserted-by": "crossref", "first-page": "4782", "journal-title": "Nat. Commun.", "key": "10.1016/j.isci.2025.112105_bib83", "volume": "13", "year": "2022" }, { "DOI": "10.1038/s41586-020-2286-9", "article-title": "A SARS-CoV-2 protein interaction map reveals targets for drug repurposing", "author": "Gordon", "doi-asserted-by": "crossref", "first-page": "459", "journal-title": "Nature", "key": "10.1016/j.isci.2025.112105_bib84", "volume": "583", "year": "2020" }, { "DOI": "10.1016/j.bbrc.2020.11.115", "article-title": "Overexpression of SARS-CoV-2 protein ORF6 dislocates RAE1 and NUP98 from the nuclear pore complex", "author": "Kato", "doi-asserted-by": "crossref", "first-page": "59", "journal-title": "Biochem. Biophys. Res. Commun.", "key": "10.1016/j.isci.2025.112105_bib85", "volume": "536", "year": "2021" }, { "article-title": "Quantification of nuclear transport inhibition by SARS-CoV-2 ORF6 using a broadly applicable live-cell dose-response pipeline", "author": "Yoo", "journal-title": "bioRxiv", "key": "10.1016/j.isci.2025.112105_bib86", "year": "2022" }, { "DOI": "10.1016/j.virol.2016.09.009", "article-title": "The vesicular stomatitis virus matrix protein inhibits NF-kappaB activation in mouse L929 cells", "author": "Varble", "doi-asserted-by": "crossref", "first-page": "99", "journal-title": "Virology", "key": "10.1016/j.isci.2025.112105_bib87", "volume": "499", "year": "2016" }, { "DOI": "10.1371/journal.ppat.1010349", "article-title": "SARS-CoV-2 ORF6 disrupts innate immune signalling by inhibiting cellular mRNA export", "author": "Hall", "doi-asserted-by": "crossref", "journal-title": "PLoS Pathog.", "key": "10.1016/j.isci.2025.112105_bib88", "volume": "18", "year": "2022" }, { "DOI": "10.1016/S1097-2765(00)00120-9", "article-title": "Vesicular stomatitis virus matrix protein inhibits host cell gene expression by targeting the nucleoporin Nup98", "author": "von Kobbe", "doi-asserted-by": "crossref", "first-page": "1243", "journal-title": "Mol. Cell", "key": "10.1016/j.isci.2025.112105_bib89", "volume": "6", "year": "2000" }, { "DOI": "10.1126/science.276.5320.1845", "article-title": "Inhibition of Ran guanosine triphosphatase-dependent nuclear transport by the matrix protein of vesicular stomatitis virus", "author": "Her", "doi-asserted-by": "crossref", "first-page": "1845", "journal-title": "Science", "key": "10.1016/j.isci.2025.112105_bib90", "volume": "276", "year": "1997" }, { "DOI": "10.1016/j.molcel.2004.11.023", "article-title": "VSV disrupts the Rae1/mrnp41 mRNA nuclear export pathway", "author": "Faria", "doi-asserted-by": "crossref", "first-page": "93", "journal-title": "Mol. Cell", "key": "10.1016/j.isci.2025.112105_bib91", "volume": "17", "year": "2005" }, { "DOI": "10.1016/j.celrep.2020.108234", "article-title": "Evasion of Type I Interferon by SARS-CoV-2", "author": "Xia", "doi-asserted-by": "crossref", "journal-title": "Cell Rep.", "key": "10.1016/j.isci.2025.112105_bib92", "volume": "33", "year": "2020" }, { "DOI": "10.1128/JVI.01012-07", "article-title": "Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane", "author": "Frieman", "doi-asserted-by": "crossref", "first-page": "9812", "journal-title": "J. Virol.", "key": "10.1016/j.isci.2025.112105_bib93", "volume": "81", "year": "2007" }, { "DOI": "10.1091/mbc.E23-10-0386", "article-title": "SARS-CoV-2 Orf6 is positioned in the nuclear pore complex by Rae1 to inhibit nucleocytoplasmic transport", "author": "Makio", "doi-asserted-by": "crossref", "first-page": "ar62", "journal-title": "Mol. Biol. Cell", "key": "10.1016/j.isci.2025.112105_bib94", "volume": "35", "year": "2024" }, { "DOI": "10.1016/j.cell.2005.02.016", "article-title": "A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly", "author": "Blower", "doi-asserted-by": "crossref", "first-page": "223", "journal-title": "Cell", "key": "10.1016/j.isci.2025.112105_bib95", "volume": "121", "year": "2005" }, { "DOI": "10.1073/pnas.2307997121", "article-title": "Quantitative comparison of nuclear transport inhibition by SARS coronavirus ORF6 reveals the importance of oligomerization", "author": "Yoo", "doi-asserted-by": "crossref", "journal-title": "Proc. Natl. Acad. Sci. USA", "key": "10.1016/j.isci.2025.112105_bib96", "volume": "121", "year": "2024" }, { "DOI": "10.1074/jbc.M500814200", "article-title": "NF-kappaB is transported into the nucleus by importin alpha3 and importin alpha4", "author": "Fagerlund", "doi-asserted-by": "crossref", "first-page": "15942", "journal-title": "J. Biol. Chem.", "key": "10.1016/j.isci.2025.112105_bib97", "volume": "280", "year": "2005" }, { "DOI": "10.1016/j.smim.2014.05.004", "article-title": "Regulation of NF-kappaB by TNF family cytokines", "author": "Hayden", "doi-asserted-by": "crossref", "first-page": "253", "journal-title": "Semin. Immunol.", "key": "10.1016/j.isci.2025.112105_bib98", "volume": "26", "year": "2014" }, { "DOI": "10.1016/j.jmb.2006.05.014", "article-title": "Thermodynamics reveal that helix four in the NLS of NF-kappaB p65 anchors IkappaBalpha, forming a very stable complex", "author": "Bergqvist", "doi-asserted-by": "crossref", "first-page": "421", "journal-title": "J. Mol. Biol.", "key": "10.1016/j.isci.2025.112105_bib99", "volume": "360", "year": "2006" }, { "DOI": "10.1101/cshperspect.a000075", "article-title": "A structural guide to proteins of the NF-kappaB signaling module", "author": "Huxford", "doi-asserted-by": "crossref", "journal-title": "Cold Spring Harb. Perspect. Biol.", "key": "10.1016/j.isci.2025.112105_bib100", "volume": "1", "year": "2009" }, { "DOI": "10.1126/science.278.5339.860", "article-title": "IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation", "author": "Mercurio", "doi-asserted-by": "crossref", "first-page": "860", "journal-title": "Science", "key": "10.1016/j.isci.2025.112105_bib101", "volume": "278", "year": "1997" }, { "DOI": "10.1074/jbc.M115.700823", "article-title": "Importin alpha1 Mediates Yorkie Nuclear Import via an N-terminal Non-canonical Nuclear Localization Signal", "author": "Wang", "doi-asserted-by": "crossref", "first-page": "7926", "journal-title": "J. Biol. Chem.", "key": "10.1016/j.isci.2025.112105_bib102", "volume": "291", "year": "2016" }, { "DOI": "10.1242/dev.179069", "article-title": "The regulation of Yorkie, YAP and TAZ: new insights into the Hippo pathway", "author": "Manning", "doi-asserted-by": "crossref", "journal-title": "Development", "key": "10.1016/j.isci.2025.112105_bib103", "volume": "147", "year": "2020" }, { "DOI": "10.1371/journal.pone.0021431", "article-title": "Identification of a classical bipartite nuclear localization signal in the Drosophila TEA/ATTS protein scalloped", "author": "Magico", "doi-asserted-by": "crossref", "journal-title": "PLoS One", "key": "10.1016/j.isci.2025.112105_bib104", "volume": "6", "year": "2011" }, { "DOI": "10.1083/jcb.115.1.1", "article-title": "Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport", "author": "Pines", "doi-asserted-by": "crossref", "first-page": "1", "journal-title": "J. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib105", "volume": "115", "year": "1991" }, { "DOI": "10.1083/jcb.200909144", "article-title": "Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis", "author": "Gavet", "doi-asserted-by": "crossref", "first-page": "247", "journal-title": "J. Cell Biol.", "key": "10.1016/j.isci.2025.112105_bib106", "volume": "189", "year": "2010" }, { "DOI": "10.1126/scisignal.2004712", "article-title": "Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions", "author": "Couzens", "doi-asserted-by": "crossref", "journal-title": "Sci. Signal.", "key": "10.1016/j.isci.2025.112105_bib107", "volume": "6", "year": "2013" }, { "DOI": "10.1002/pro.3978", "article-title": "The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions", "author": "Oughtred", "doi-asserted-by": "crossref", "first-page": "187", "journal-title": "Protein Sci.", "key": "10.1016/j.isci.2025.112105_bib108", "volume": "30", "year": "2021" }, { "DOI": "10.1128/JVI.01279-08", "article-title": "hnRNPs Relocalize to the cytoplasm following infection with vesicular stomatitis virus", "author": "Pettit Kneller", "doi-asserted-by": "crossref", "first-page": "770", "journal-title": "J. Virol.", "key": "10.1016/j.isci.2025.112105_bib109", "volume": "83", "year": "2009" }, { "DOI": "10.1371/journal.pone.0131137", "article-title": "Impact of Vesicular Stomatitis Virus M Proteins on Different Cellular Functions", "author": "Redondo", "doi-asserted-by": "crossref", "journal-title": "PLoS One", "key": "10.1016/j.isci.2025.112105_bib110", "volume": "10", "year": "2015" }, { "DOI": "10.1073/pnas.051631598", "article-title": "Disruption of the FG nucleoporin NUP98 causes selective changes in nuclear pore complex stoichiometry and function", "author": "Wu", "doi-asserted-by": "crossref", "first-page": "3191", "journal-title": "Proc. Natl. Acad. Sci. USA", "key": "10.1016/j.isci.2025.112105_bib111", "volume": "98", "year": "2001" }, { "DOI": "10.7554/eLife.04251", "article-title": "Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity", "author": "Schmidt", "doi-asserted-by": "crossref", "journal-title": "Elife", "key": "10.1016/j.isci.2025.112105_bib112", "volume": "4", "year": "2015" }, { "DOI": "10.1016/S0092-8674(00)00014-3", "article-title": "Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking", "author": "Bayliss", "doi-asserted-by": "crossref", "first-page": "99", "journal-title": "Cell", "key": "10.1016/j.isci.2025.112105_bib113", "volume": "102", "year": "2000" }, { "DOI": "10.1038/s41392-022-01296-1", "article-title": "Host cell cycle checkpoint as antiviral target for SARS-CoV-2 revealed by integrative transcriptome and proteome analyses", "author": "Sui", "doi-asserted-by": "crossref", "first-page": "21", "journal-title": "Signal Transduct. Target. Ther.", "key": "10.1016/j.isci.2025.112105_bib114", "volume": "8", "year": "2023" }, { "DOI": "10.3389/fvets.2020.586826", "article-title": "A Mini-Review on Cell Cycle Regulation of Coronavirus Infection", "author": "Su", "doi-asserted-by": "crossref", "journal-title": "Front. Vet. Sci.", "key": "10.1016/j.isci.2025.112105_bib115", "volume": "7", "year": "2020" }, { "DOI": "10.1128/JVI.01885-18", "article-title": "Cell Cycle Arrest in G(2)/M Phase Enhances Replication of Interferon-Sensitive Cytoplasmic RNA Viruses via Inhibition of Antiviral Gene Expression", "author": "Bressy", "doi-asserted-by": "crossref", "first-page": "e01885-18", "journal-title": "J. Virol.", "key": "10.1016/j.isci.2025.112105_bib116", "volume": "93", "year": "2019" }, { "DOI": "10.1371/journal.pgen.1006198", "article-title": "The Hippo Pathway Targets Rae1 to Regulate Mitosis and Organ Size and to Feed Back to Regulate Upstream Components Merlin, Hippo, and Warts", "author": "Jahanshahi", "doi-asserted-by": "crossref", "journal-title": "PLoS Genet.", "key": "10.1016/j.isci.2025.112105_bib117", "volume": "12", "year": "2016" }, { "DOI": "10.1016/j.ccell.2021.06.016", "article-title": "Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity", "author": "Pearson", "doi-asserted-by": "crossref", "first-page": "1115", "journal-title": "Cancer Cell", "key": "10.1016/j.isci.2025.112105_bib118", "volume": "39", "year": "2021" }, { "DOI": "10.1093/nar/gkx238", "article-title": "SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions", "author": "Krystkowiak", "doi-asserted-by": "crossref", "first-page": "W464", "journal-title": "Nucleic Acids Res.", "key": "10.1016/j.isci.2025.112105_bib119", "volume": "45", "year": "2017" }, { "DOI": "10.1126/science.1062374", "article-title": "Duration of nuclear NF-kappaB action regulated by reversible acetylation", "author": "Chen", "doi-asserted-by": "crossref", "first-page": "1653", "journal-title": "Science", "key": "10.1016/j.isci.2025.112105_bib120", "volume": "293", "year": "2001" }, { "DOI": "10.1186/s12859-021-04344-9", "article-title": "CellProfiler 4: improvements in speed, utility and usability", "author": "Stirling", "doi-asserted-by": "crossref", "first-page": "433", "journal-title": "BMC Bioinformatics", "key": "10.1016/j.isci.2025.112105_bib121", "volume": "22", "year": "2021" } ], "reference-count": 121, "references-count": 121, "relation": {}, "resource": { "primary": { "URL": "https://linkinghub.elsevier.com/retrieve/pii/S2589004225003657" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import", "type": "journal-article", "update-policy": "https://doi.org/10.1016/elsevier_cm_policy", "volume": "28" }
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit