Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All ivermectin studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19ivm.org COVID-19 treatment researchIvermectinIvermectin (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Prophylactic administration of ivermectin attenuates SARS-CoV-2 induced disease in a Syrian Hamster Model

Uematsu et al., The Journal of Antibiotics, doi:10.1038/s41429-023-00623-0 (date from preprint)
Sep 2022  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Ivermectin for COVID-19
4th treatment shown to reduce risk in August 2020
 
*, now with p < 0.00000000001 from 104 studies, recognized in 22 countries.
No treatment is 100% effective. Protocols combine treatments. * >10% efficacy, ≥3 studies.
4,300+ studies for 75 treatments. c19ivm.org
Hamster study showing that prophylactic ivermectin inhibited COVID-19 weight loss, reduced lung viral titer by a factor of 10, inhibited pulmonary inflammatory cytokine expression, and reduced the severity of pathological changes with a single 1mg/kg dose. Authors also tested 250 and 500µg/kg for inhibition of weight loss, showing a dose-response relationship. While not statistically significant, 500µg/kg also showed a trend for benefit.
68 preclinical studies support the efficacy of ivermectin for COVID-19:
Ivermectin, better known for antiparasitic activity, is a broad spectrum antiviral with activity against many viruses including H7N766, Dengue32,67,68, HIV-168, Simian virus 4069, Zika32,70,71, West Nile71, Yellow Fever72,73, Japanese encephalitis72, Chikungunya73, Semliki Forest virus73, Human papillomavirus52, Epstein-Barr52, BK Polyomavirus74, and Sindbis virus73.
Ivermectin inhibits importin-α/β-dependent nuclear import of viral proteins66,68,69,75, shows spike-ACE2 disruption at 1nM with microfluidic diffusional sizing33, binds to glycan sites on the SARS-CoV-2 spike protein preventing interaction with blood and epithelial cells and inhibiting hemagglutination36,76, shows dose-dependent inhibition of wildtype and omicron variants31, exhibits dose-dependent inhibition of lung injury56,61, may inhibit SARS-CoV-2 via IMPase inhibition32, may inhibit SARS-CoV-2 induced formation of fibrin clots resistant to degradation5, inhibits SARS-CoV-2 3CLpro49, may inhibit SARS-CoV-2 RdRp activity24, may minimize viral myocarditis by inhibiting NF-κB/p65-mediated inflammation in macrophages55, may be beneficial for COVID-19 ARDS by blocking GSDMD and NET formation77, shows protection against inflammation, cytokine storm, and mortality in an LPS mouse model sharing key pathological features of severe COVID-1954,78, may be beneficial in severe COVID-19 by binding IGF1 to inhibit the promotion of inflammation, fibrosis, and cell proliferation that leads to lung damage4, may minimize SARS-CoV-2 induced cardiac damage35,43, increases Bifidobacteria which play a key role in the immune system79, has immunomodulatory46 and anti-inflammatory65,80 properties, and has an extensive and very positive safety profile81.
Uematsu et al., 15 Sep 2022, peer-reviewed, 6 authors. Contact: tuematsu@insti.kitasato-u.ac.jp.
This PaperIvermectinAll
Prophylactic administration of ivermectin attenuates SARS-CoV-2 induced disease in a Syrian Hamster Model
Takayuki Uematsu, Tomomi Takano, Hidehito Matsui, Noritada Kobayashi, Satoshi Ōmura, Hideaki Hanaki
The Journal of Antibiotics, doi:10.1038/s41429-023-00623-0
, caused by SARS-CoV-2 infection, is currently among the most important public health concerns worldwide. Although several effective vaccines have been developed, there is an urgent clinical need for effective pharmaceutical treatments for treatment of COVID-19. Ivermectin, a chemical derivative of avermectin produced by Streptomyces avermitilis, is a macrocyclic lactone with antiparasitic activity. Recent studies have shown that ivermectin inhibits SARS-CoV-2 replication in vitro. In the present study, we investigated the in vivo effects of ivermectin in a hamster model of SARS-CoV-2 infection. The results of the present study demonstrate oral administration of ivermectin prior to SARS-CoV-2 infection in hamsters was associated with decreased weight loss and pulmonary inflammation. In addition, the administration of ivermectin reduced pulmonary viral titers and mRNA expression level of pro-inflammatory cytokines associated with severe COVID-19 disease. The administration of ivermectin rapidly induced the production of virus-specific neutralizing antibodies in the late stage of viral infection. Zinc concentrations leading to immune quiescence were also significantly higher in the lungs of ivermectin-treated hamsters compared to controls. These results indicate that ivermectin may have efficacy in reducing the development and severity of COVID-19 by affecting host immunity in a hamster model of SARS-CoV-2 infection.
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41429-023-00623-0. Infectious Diseases from the Japan Agency for Medical Research and Development, under grant JP20fk0108158 to HH. Compliance with ethical standards Conflict of interest The authors declare no competing interests. Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons. org/licenses/by/4.0/.
References
Arévalo, Ivermectin reduces in vivo coronavirus infection in a mouse experimental model, Sci Rep
Blondeau, Immunomodulatory Effects of Macrolides Considering Evidence from Human and Veterinary Medicine, Microorganisms
Brevini, FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2, Nature
Caly, Druce, Catton, Jans, Wagstaff, The FDAapproved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antivir Res
Chan, Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility, Clin Infect Dis
Collier, Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies, Nature
Crump, Omura, Ivermectin, 'Wonder drug' from Japan: The human use perspective, Proc Jpn Acad Sers B Phys Biol Sci
De Melo, Attenuation of clinical and immunological outcomes during SARS-CoV-2 infection by ivermectin, EMBO Mol Med
Ebisudani, Direct derivation of human alveolospheres for SARS-CoV-2 infection modeling and drug screening, Cell Rep
Flerlage, Boyd, Meliopoulos, Thomas, Schultz-Cherry, Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract, Nat Rev Microbiol
Hirano, Roles of Zinc and Zinc Signaling in Immunity: Zinc as an Intracellular Signaling Molecule, Adv Immunol
Imai, Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development, Proc Nat Acad Sci
Israel, Elapsed time since BNT162b2 vaccine and risk of SARS-CoV-2 infection: test negative design study, BMJ
Jin, The antiparasitic drug ivermectin is a novel FXR ligand that regulates metabolism, Nat Commun
Kaur, Ivermectin as a potential drug for treatment of COVID-19: an in-sync review with clinical and computational attributes, Pharm Rep
Khezri, Zolbanin, Ghasemnejad-Berenji, Jafari, Azithromycin: Immunomodulatory and antiviral properties for SARS-CoV-2 infection, Eur J Pharm
Kitamura, Toll-like receptor-mediated regulation of zinc homeostasis influences dendritic cell function, Nat Immunol
Kumar, Kubota, Chernov, Kasuya, Potential role of zinc supplementation in prophylaxis and treatment of COVID-19, Med Hypotheses
Ladds, Persistent symptoms after Covid-19: qualitative study of 114 "long Covid" patients and draft quality principles for services, BMC Health Serv Res
Matsuyama, Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells, Proc Nat Acad Sci
Nambara, Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer, Oncotarget
Namkoong, Clarithromycin expands CD11b+Gr-1+ cells via the STAT3/Bv8 axis to ameliorate lethal endotoxic shock and postinfluenza bacterial pneumonia, PLoS Pathog
Nishio, Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice, Proc Natl Acad Sci
Popp, Ivermectin for preventing and treating COVID-19, Cochrane Database Syst Rev
Puntmann, Vo, Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered from Coronavirus Disease 2019 (COVID-19), JAMA Cardiol
Ramos-Casals, Brito-Zerón, Systemic and organspecific immune-related manifestations of COVID-19, Nat Rev Rheumatol
Rawat, Kumari, Saha, COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies, Eur J Pharm
Schultze, Aschenbrenner, COVID-19 and the human innate immune system, Cell
Sharma, Sultan, Ding, Triggle, A Review of the Progress and Challenges of Developing a Vaccine for COVID-19, Front Immunol
Sia, Pathogenesis and transmission of SARS-CoV-2 in golden hamsters, Nature
Stratton, Tang, Lu, Pathogenesis-directed therapy of 2019 novel coronavirus disease, J Med Virol
Velthuis, Zn2+ Inhibits Coronavirus and RNA Polymerase Activity In and Zinc Ionophores Block the Replication of These Viruses in Cell Culture, PLoS Pathog
Venditto, Immunomodulatory Effects of Azithromycin Revisited: Potential Applications to COVID-19, Front Immunol
Vig, Kinet, Calcium signaling in immune cells, Nat Immunol
Wagstaff, Sivakumaran, Heaton, Harrich, Jans, Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus, Biochem J
Wang, SARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease, Emerg Microbes Infect
Wiersinga, Rhodes, Cheng, Peacock, Prescott, Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review, JAMA
Xu, Antivirus effectiveness of ivermectin on dengue virus type 2 in Aedes albopictus, PLoS Negl Trop Dis
Yang, The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer, Antivir Res
Õmura, Crump, The life and times of ivermectin-A success story, Nat Rev Microbiol
{ 'indexed': {'date-parts': [[2023, 4, 26]], 'date-time': '2023-04-26T05:01:39Z', 'timestamp': 1682485299130}, 'reference-count': 40, 'publisher': 'Springer Science and Business Media LLC', 'license': [ { 'start': { 'date-parts': [[2023, 4, 25]], 'date-time': '2023-04-25T00:00:00Z', 'timestamp': 1682380800000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}, { 'start': { 'date-parts': [[2023, 4, 25]], 'date-time': '2023-04-25T00:00:00Z', 'timestamp': 1682380800000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'abstract': '<jats:title>Abstract</jats:title><jats:p>COVID-19, caused by SARS-CoV-2 infection, is ' 'currently among the most important public health concerns worldwide. Although several ' 'effective vaccines have been developed, there is an urgent clinical need for effective ' 'pharmaceutical treatments for treatment of COVID-19. Ivermectin, a chemical derivative of ' 'avermectin produced by <jats:italic>Streptomyces avermitilis</jats:italic>, is a macrocyclic ' 'lactone with antiparasitic activity. Recent studies have shown that ivermectin inhibits ' 'SARS-CoV-2 replication in vitro. In the present study, we investigated the in vivo effects of ' 'ivermectin in a hamster model of SARS-CoV-2 infection. The results of the present study ' 'demonstrate oral administration of ivermectin prior to SARS-CoV-2 infection in hamsters was ' 'associated with decreased weight loss and pulmonary inflammation. In addition, the ' 'administration of ivermectin reduced pulmonary viral titers and mRNA expression level of ' 'pro-inflammatory cytokines associated with severe COVID-19 disease. The administration of ' 'ivermectin rapidly induced the production of virus-specific neutralizing antibodies in the ' 'late stage of viral infection. Zinc concentrations leading to immune quiescence were also ' 'significantly higher in the lungs of ivermectin-treated hamsters compared to controls. These ' 'results indicate that ivermectin may have efficacy in reducing the development and severity ' 'of COVID-19 by affecting host immunity in a hamster model of SARS-CoV-2 infection.</jats:p>', 'DOI': '10.1038/s41429-023-00623-0', 'type': 'journal-article', 'created': {'date-parts': [[2023, 4, 25]], 'date-time': '2023-04-25T10:03:30Z', 'timestamp': 1682417010000}, 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Prophylactic administration of ivermectin attenuates SARS-CoV-2 induced disease in a Syrian ' 'Hamster Model', 'prefix': '10.1038', 'author': [ { 'ORCID': 'http://orcid.org/0000-0002-3680-7231', 'authenticated-orcid': False, 'given': 'Takayuki', 'family': 'Uematsu', 'sequence': 'first', 'affiliation': []}, {'given': 'Tomomi', 'family': 'Takano', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-0099-3340', 'authenticated-orcid': False, 'given': 'Hidehito', 'family': 'Matsui', 'sequence': 'additional', 'affiliation': []}, {'given': 'Noritada', 'family': 'Kobayashi', 'sequence': 'additional', 'affiliation': []}, {'given': 'Satoshi', 'family': 'Ōmura', 'sequence': 'additional', 'affiliation': []}, {'given': 'Hideaki', 'family': 'Hanaki', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2023, 4, 25]]}, 'reference': [ { 'key': '623_CR1', 'doi-asserted-by': 'publisher', 'first-page': '782', 'DOI': '10.1001/jama.2020.12839', 'volume': '324', 'author': 'WJ Wiersinga', 'year': '2020', 'unstructured': 'Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. ' 'Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus ' 'Disease 2019 (COVID-19): A Review. JAMA. 2020;324:782–93.', 'journal-title': 'JAMA'}, { 'key': '623_CR2', 'doi-asserted-by': 'publisher', 'first-page': '315', 'DOI': '10.1038/s41584-021-00608-z', 'volume': '17', 'author': 'M Ramos-Casals', 'year': '2021', 'unstructured': 'Ramos-Casals M, Brito-Zerón P, Mariette X. Systemic and organ-specific ' 'immune-related manifestations of COVID-19. Nat Rev Rheumatol. ' '2021;17:315–32.', 'journal-title': 'Nat Rev Rheumatol'}, { 'key': '623_CR3', 'doi-asserted-by': 'publisher', 'first-page': '1265', 'DOI': '10.1001/jamacardio.2020.3557', 'volume': '5', 'author': 'VO Puntmann', 'year': '2020', 'unstructured': 'Puntmann VO, et al. Outcomes of Cardiovascular Magnetic Resonance ' 'Imaging in Patients Recently Recovered from Coronavirus Disease 2019 ' '(COVID-19). JAMA Cardiol. 2020;5:1265–73.', 'journal-title': 'JAMA Cardiol'}, { 'key': '623_CR4', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s12913-020-06001-y', 'volume': '20', 'author': 'E Ladds', 'year': '2020', 'unstructured': 'Ladds E, et al. Persistent symptoms after Covid-19: qualitative study of ' '114 “long Covid” patients and draft quality principles for services. BMC ' 'Health Serv Res. 2020;20:1144.', 'journal-title': 'BMC Health Serv Res'}, { 'key': '623_CR5', 'doi-asserted-by': 'publisher', 'first-page': '585354', 'DOI': '10.3389/fimmu.2020.585354', 'volume': '11', 'author': 'O Sharma', 'year': '2020', 'unstructured': 'Sharma O, Sultan AA, Ding H, Triggle CR. A Review of the Progress and ' 'Challenges of Developing a Vaccine for COVID-19. Front Immunol. ' '2020;11:585354.', 'journal-title': 'Front Immunol'}, { 'key': '623_CR6', 'doi-asserted-by': 'publisher', 'first-page': '173751', 'DOI': '10.1016/j.ejphar.2020.173751', 'volume': '892', 'author': 'K Rawat', 'year': '2021', 'unstructured': 'Rawat K, Kumari P, Saha L. COVID-19 vaccine: A recent update in pipeline ' 'vaccines, their design and development strategies. Eur J Pharm. ' '2021;892:173751.', 'journal-title': 'Eur J Pharm'}, { 'key': '623_CR7', 'doi-asserted-by': 'publisher', 'first-page': '136', 'DOI': '10.1038/s41586-021-03412-7', 'volume': '593', 'author': 'DA Collier', 'year': '2021', 'unstructured': 'Collier DA, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA ' 'vaccine-elicited antibodies. Nature. 2021;593:136–41.', 'journal-title': 'Nature'}, { 'key': '623_CR8', 'doi-asserted-by': 'publisher', 'first-page': 'e067873', 'DOI': '10.1136/bmj-2021-067873', 'volume': '375', 'author': 'A Israel', 'year': '2021', 'unstructured': 'Israel A, et al. Elapsed time since BNT162b2 vaccine and risk of ' 'SARS-CoV-2 infection: test negative design study. BMJ. 2021;375:e067873.', 'journal-title': 'BMJ'}, { 'key': '623_CR9', 'doi-asserted-by': 'publisher', 'first-page': '984', 'DOI': '10.1038/nrmicro1048', 'volume': '2', 'author': 'S Õmura', 'year': '2004', 'unstructured': 'Õmura S, Crump A. The life and times of ivermectin—A success story. Nat ' 'Rev Microbiol. 2004;2:984–9.', 'journal-title': 'Nat Rev Microbiol'}, { 'key': '623_CR10', 'doi-asserted-by': 'publisher', 'first-page': '13', 'DOI': '10.2183/pjab.87.13', 'volume': '87', 'author': 'A Crump', 'year': '2011', 'unstructured': 'Crump A, Omura S. Ivermectin, ‘Wonder drug’ from Japan: The human use ' 'perspective. Proc Jpn Acad Sers B Phys Biol Sci. 2011;87:13–28.', 'journal-title': 'Proc Jpn Acad Sers B Phys Biol Sci'}, { 'key': '623_CR11', 'doi-asserted-by': 'publisher', 'first-page': '104787', 'DOI': '10.1016/j.antiviral.2020.104787', 'volume': '178', 'author': 'L Caly', 'year': '2020', 'unstructured': 'Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ' 'ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir Res. ' '2020;178:104787.', 'journal-title': 'Antivir Res'}, { 'key': '623_CR12', 'first-page': 'CD015017', 'volume': '6', 'author': 'M Popp', 'year': '2022', 'unstructured': 'Popp M, et al. Ivermectin for preventing and treating COVID-19. Cochrane ' 'Database Syst Rev. 2022;6:CD015017.', 'journal-title': 'Cochrane Database Syst Rev'}, { 'key': '623_CR13', 'doi-asserted-by': 'publisher', 'first-page': '834', 'DOI': '10.1038/s41586-020-2342-5', 'volume': '583', 'author': 'SF Sia', 'year': '2020', 'unstructured': 'Sia SF, et al. Pathogenesis and transmission of SARS-CoV-2 in golden ' 'hamsters. Nature. 2020;583:834–8.', 'journal-title': 'Nature'}, { 'key': '623_CR14', 'doi-asserted-by': 'publisher', 'first-page': '16587', 'DOI': '10.1073/pnas.2009799117', 'volume': '117', 'author': 'M Imai', 'year': '2020', 'unstructured': 'Imai M, et al. Syrian hamsters as a small animal model for SARS-CoV-2 ' 'infection and countermeasure development. Proc Nat Acad Sci USA. ' '2020;117:16587–95.', 'journal-title': 'Proc Nat Acad Sci USA'}, { 'key': '623_CR15', 'doi-asserted-by': 'publisher', 'first-page': '2428', 'DOI': '10.1093/cid/ciaa644', 'volume': '71', 'author': 'JF-W Chan', 'year': '2020', 'unstructured': 'Chan JF-W, et al. Simulation of the clinical and pathological ' 'manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian ' 'hamster model: implications for disease pathogenesis and ' 'transmissibility. Clin Infect Dis. 2020;71:2428–46.', 'journal-title': 'Clin Infect Dis'}, { 'key': '623_CR16', 'doi-asserted-by': 'publisher', 'first-page': '109218', 'DOI': '10.1016/j.celrep.2021.109218', 'volume': '35', 'author': 'T Ebisudani', 'year': '2021', 'unstructured': 'Ebisudani T, et al. Direct derivation of human alveolospheres for ' 'SARS-CoV-2 infection modeling and drug screening. Cell Rep. ' '2021;35:109218.', 'journal-title': 'Cell Rep'}, { 'key': '623_CR17', 'doi-asserted-by': 'publisher', 'first-page': '7001', 'DOI': '10.1073/pnas.2002589117', 'volume': '117', 'author': 'S Matsuyama', 'year': '2020', 'unstructured': 'Matsuyama S, et al. Enhanced isolation of SARS-CoV-2 by ' 'TMPRSS2-expressing cells. Proc Nat Acad Sci USA. 2020;117:7001–3.', 'journal-title': 'Proc Nat Acad Sci USA'}, { 'key': '623_CR18', 'doi-asserted-by': 'publisher', 'first-page': '1671', 'DOI': '10.1016/j.cell.2021.02.029', 'volume': '184', 'author': 'JL Schultze', 'year': '2021', 'unstructured': 'Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune ' 'system. Cell. 2021;184:1671–92.', 'journal-title': 'Cell'}, { 'key': '623_CR19', 'doi-asserted-by': 'publisher', 'first-page': '425', 'DOI': '10.1038/s41579-021-00542-7', 'volume': '19', 'author': 'T Flerlage', 'year': '2021', 'unstructured': 'Flerlage T, Boyd DF, Meliopoulos V, Thomas PG, Schultz-Cherry S. ' 'Influenza virus and SARS-CoV-2: pathogenesis and host responses in the ' 'respiratory tract. Nat Rev Microbiol. 2021;19:425–41.', 'journal-title': 'Nat Rev Microbiol'}, { 'key': '623_CR20', 'doi-asserted-by': 'publisher', 'first-page': 'E71', 'DOI': '10.1073/pnas.1517188113', 'volume': '113', 'author': 'M Nishio', 'year': '2016', 'unstructured': 'Nishio M, et al. Dysregulated YAP1/TAZ and TGF-β signaling mediate ' 'hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci USA. ' '2016;113:E71–80.', 'journal-title': 'Proc Natl Acad Sci USA'}, { 'key': '623_CR21', 'doi-asserted-by': 'publisher', 'first-page': '107666', 'DOI': '10.18632/oncotarget.22587', 'volume': '8', 'author': 'S Nambara', 'year': '2017', 'unstructured': 'Nambara S, et al. Antitumor effects of the antiparasitic agent ' 'ivermectin via inhibition of Yes-associated protein 1 expression in ' 'gastric cancer. Oncotarget. 2017;8:107666–77.', 'journal-title': 'Oncotarget'}, { 'key': '623_CR22', 'doi-asserted-by': 'publisher', 'first-page': '851', 'DOI': '10.1042/BJ20120150', 'volume': '443', 'author': 'KM Wagstaff', 'year': '2012', 'unstructured': 'Wagstaff KM, Sivakumaran H, Heaton SM, Harrich D, Jans DA. Ivermectin is ' 'a specific inhibitor of importin α/β-mediated nuclear import able to ' 'inhibit replication of HIV-1 and dengue virus. Biochem J. ' '2012;443:851–6.', 'journal-title': 'Biochem J'}, { 'key': '623_CR23', 'doi-asserted-by': 'publisher', 'first-page': 'e0006934', 'DOI': '10.1371/journal.pntd.0006934', 'volume': '12', 'author': 'TL Xu', 'year': '2018', 'unstructured': 'Xu TL, et al. Antivirus effectiveness of ivermectin on dengue virus type ' '2 in Aedes albopictus. PLoS Negl Trop Dis. 2018;12:e0006934.', 'journal-title': 'PLoS Negl Trop Dis'}, { 'key': '623_CR24', 'doi-asserted-by': 'publisher', 'first-page': '104760', 'DOI': '10.1016/j.antiviral.2020.104760', 'volume': '177', 'author': 'SNY Yang', 'year': '2020', 'unstructured': 'Yang SNY, et al. The broad spectrum antiviral ivermectin targets the ' 'host nuclear transport importin α/β1 heterodimer. Antivir Res. ' '2020;177:104760.', 'journal-title': 'Antivir Res'}, { 'key': '623_CR25', 'doi-asserted-by': 'publisher', 'first-page': '1320', 'DOI': '10.1002/jmv.26610', 'volume': '93', 'author': 'CW Stratton', 'year': '2021', 'unstructured': 'Stratton CW, Tang YW, Lu H. Pathogenesis-directed therapy of 2019 novel ' 'coronavirus disease. J Med Virol. 2021;93:1320–42.', 'journal-title': 'J Med Virol'}, { 'key': '623_CR26', 'doi-asserted-by': 'publisher', 'first-page': '2091', 'DOI': '10.1080/22221751.2020.1823890', 'volume': '9', 'author': 'P Wang', 'year': '2020', 'unstructured': 'Wang P, et al. SARS-CoV-2 neutralizing antibody responses are more ' 'robust in patients with severe disease. Emerg Microbes Infect. ' '2020;9:2091–3.', 'journal-title': 'Emerg Microbes Infect'}, { 'key': '623_CR27', 'doi-asserted-by': 'publisher', 'first-page': 'e14122', 'DOI': '10.15252/emmm.202114122', 'volume': '13', 'author': 'GD de Melo', 'year': '2021', 'unstructured': 'de Melo GD, et al. Attenuation of clinical and immunological outcomes ' 'during SARS-CoV-2 infection by ivermectin. EMBO Mol Med. 2021;13:e14122.', 'journal-title': 'EMBO Mol Med'}, { 'key': '623_CR28', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41598-021-86679-0', 'volume': '11', 'author': 'AP Arévalo', 'year': '2021', 'unstructured': 'Arévalo AP, et al. Ivermectin reduces in vivo coronavirus infection in a ' 'mouse experimental model. Sci Rep. 2021;11:7132.', 'journal-title': 'Sci Rep'}, { 'key': '623_CR29', 'doi-asserted-by': 'publisher', 'first-page': 'e1006955', 'DOI': '10.1371/journal.ppat.1006955', 'volume': '14', 'author': 'H Namkoong', 'year': '2018', 'unstructured': 'Namkoong H, et al. Clarithromycin expands CD11b+Gr-1+ cells via the ' 'STAT3/Bv8 axis to ameliorate lethal endotoxic shock and post-influenza ' 'bacterial pneumonia. PLoS Pathog. 2018;14:e1006955.', 'journal-title': 'PLoS Pathog'}, { 'key': '623_CR30', 'doi-asserted-by': 'publisher', 'first-page': '174191', 'DOI': '10.1016/j.ejphar.2021.174191', 'volume': '905', 'author': 'MR Khezri', 'year': '2021', 'unstructured': 'Khezri MR, Zolbanin NM, Ghasemnejad-berenji M, Jafari R. Azithromycin: ' 'Immunomodulatory and antiviral properties for SARS-CoV-2 infection. Eur ' 'J Pharm. 2021;905:174191.', 'journal-title': 'Eur J Pharm'}, { 'key': '623_CR31', 'doi-asserted-by': 'publisher', 'first-page': '574425', 'DOI': '10.3389/fimmu.2021.574425', 'volume': '12', 'author': 'VJ Venditto', 'year': '2021', 'unstructured': 'Venditto VJ, et al. Immunomodulatory Effects of Azithromycin Revisited: ' 'Potential Applications to COVID-19. Front Immunol. 2021;12:574425.', 'journal-title': 'Front Immunol'}, { 'key': '623_CR32', 'doi-asserted-by': 'publisher', 'first-page': '2438', 'DOI': '10.3390/microorganisms10122438', 'volume': '10', 'author': 'JM Blondeau', 'year': '2022', 'unstructured': 'Blondeau JM. Immunomodulatory Effects of Macrolides Considering Evidence ' 'from Human and Veterinary Medicine. Microorganisms. 2022;10:2438.', 'journal-title': 'Microorganisms'}, { 'key': '623_CR33', 'doi-asserted-by': 'publisher', 'first-page': '736', 'DOI': '10.1007/s43440-020-00195-y', 'volume': '73', 'author': 'H Kaur', 'year': '2021', 'unstructured': 'Kaur H, et al. Ivermectin as a potential drug for treatment of COVID-19: ' 'an in-sync review with clinical and computational attributes. Pharm Rep. ' '2021;73:736–49.', 'journal-title': 'Pharm Rep'}, { 'key': '623_CR34', 'doi-asserted-by': 'publisher', 'first-page': '149', 'DOI': '10.1016/S0065-2776(08)00003-5', 'volume': '97', 'author': 'T Hirano', 'year': '2008', 'unstructured': 'Hirano T, et al. Roles of Zinc and Zinc Signaling in Immunity: Zinc as ' 'an Intracellular Signaling Molecule. Adv Immunol. 2008;97:149–76.', 'journal-title': 'Adv Immunol'}, { 'key': '623_CR35', 'doi-asserted-by': 'publisher', 'first-page': '21', 'DOI': '10.1038/ni.f.220', 'volume': '10', 'author': 'M Vig', 'year': '2009', 'unstructured': 'Vig M, Kinet JP. Calcium signaling in immune cells. Nat Immunol. ' '2009;10:21–7.', 'journal-title': 'Nat Immunol'}, { 'key': '623_CR36', 'doi-asserted-by': 'publisher', 'first-page': 'e1001176', 'DOI': '10.1371/journal.ppat.1001176', 'volume': '6', 'author': 'AJW te Velthuis', 'year': '2010', 'unstructured': 'te Velthuis AJW, et al. Zn2+ Inhibits Coronavirus and Arterivirus RNA ' 'Polymerase Activity In Vitro and Zinc Ionophores Block the Replication ' 'of These Viruses in Cell Culture. PLoS Pathog. 2010;6:e1001176.', 'journal-title': 'PLoS Pathog'}, { 'key': '623_CR37', 'doi-asserted-by': 'publisher', 'first-page': '109848', 'DOI': '10.1016/j.mehy.2020.109848', 'volume': '144', 'author': 'A Kumar', 'year': '2020', 'unstructured': 'Kumar A, Kubota Y, Chernov M, Kasuya H. Potential role of zinc ' 'supplementation in prophylaxis and treatment of COVID-19. Med ' 'Hypotheses. 2020;144:109848.', 'journal-title': 'Med Hypotheses'}, { 'key': '623_CR38', 'doi-asserted-by': 'publisher', 'first-page': '971', 'DOI': '10.1038/ni1373', 'volume': '7', 'author': 'H Kitamura', 'year': '2006', 'unstructured': 'Kitamura H, et al. Toll-like receptor-mediated regulation of zinc ' 'homeostasis influences dendritic cell function. Nat Immunol. ' '2006;7:971–7.', 'journal-title': 'Nat Immunol'}, { 'key': '623_CR39', 'doi-asserted-by': 'publisher', 'first-page': '134', 'DOI': '10.1038/s41586-022-05594-0', 'volume': '615', 'author': 'T Brevini', 'year': '2023', 'unstructured': 'Brevini T, et al. FXR inhibition may protect from SARS-CoV-2 infection ' 'by reducing ACE2. Nature. 2023;615:134–42.', 'journal-title': 'Nature'}, { 'key': '623_CR40', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/ncomms2924', 'volume': '4', 'author': 'L Jin', 'year': '2013', 'unstructured': 'Jin L, et al. The antiparasitic drug ivermectin is a novel FXR ligand ' 'that regulates metabolism. Nat Commun. 2013;4:1937.', 'journal-title': 'Nat Commun'}], 'container-title': 'The Journal of Antibiotics', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.nature.com/articles/s41429-023-00623-0.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s41429-023-00623-0', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s41429-023-00623-0.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2023, 4, 25]], 'date-time': '2023-04-25T10:07:43Z', 'timestamp': 1682417263000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.nature.com/articles/s41429-023-00623-0'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 4, 25]]}, 'references-count': 40, 'alternative-id': ['623'], 'URL': 'http://dx.doi.org/10.1038/s41429-023-00623-0', 'relation': {}, 'ISSN': ['0021-8820', '1881-1469'], 'subject': ['Drug Discovery', 'Pharmacology'], 'container-title-short': 'J Antibiot', 'published': {'date-parts': [[2023, 4, 25]]}, 'assertion': [ { 'value': '5 January 2023', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '22 March 2023', 'order': 2, 'name': 'revised', 'label': 'Revised', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '5 April 2023', 'order': 3, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '25 April 2023', 'order': 4, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Compliance with ethical standards'}}, { 'value': 'The authors declare no competing interests.', 'order': 2, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Conflict of interest'}}]}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit