Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All ivermectin studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19ivm.org COVID-19 treatment researchIvermectinIvermectin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Enhanced In Vitro Antiviral Activity of Ivermectin-Loaded Nanostructured Lipid Carriers against Porcine Epidemic Diarrhea Virus via Improved Intracellular Delivery

Xu et al., Pharmaceutics, doi:10.3390/pharmaceutics16050601
Apr 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Ivermectin for COVID-19
4th treatment shown to reduce risk in August 2020
 
*, now with p < 0.00000000001 from 105 studies, recognized in 23 countries.
No treatment is 100% effective. Protocols combine treatments. * >10% efficacy, ≥3 studies.
4,500+ studies for 81 treatments. c19ivm.org
Non-COVID-19 In Vitro study showing enhanced antiviral activity of ivermectin against porcine epidemic diarrhea virus when loaded into nanostructured lipid carriers. Ivermectin-loaded nanostructured lipid carriers (IVM-NLCs) inhibited viral proliferation by up to 3 orders of magnitude compared to free ivermectin. IVM-NLCs also reduced reactive oxygen species accumulation, mitigated mitochondrial dysfunction, and decreased apoptosis in infected cells compared to free ivermectin. The enhanced efficacy is attributed to improved intracellular delivery of ivermectin by the nanostructured lipid carriers.
While this is not a COVID-19 study, the IVM-NLCs may potentially have similar advantages for COVID-19. As SARS-CoV-2 replicates inside host cells, improved intracellular delivery of ivermectin could be beneficial for COVID-19 treatment. IVM-NLCs reduced reactive oxygen species accumulation, mitigated mitochondrial dysfunction, and decreased apoptosis in PEDV-infected cells. These effects could potentially help to reduce the severity of COVID-19 by limiting virus-induced cell damage.
68 preclinical studies support the efficacy of ivermectin for COVID-19:
Ivermectin, better known for antiparasitic activity, is a broad spectrum antiviral with activity against many viruses including H7N766, Dengue32,67,68, HIV-168, Simian virus 4069, Zika32,70,71, West Nile71, Yellow Fever72,73, Japanese encephalitis72, Chikungunya73, Semliki Forest virus73, Human papillomavirus52, Epstein-Barr52, BK Polyomavirus74, and Sindbis virus73.
Ivermectin inhibits importin-α/β-dependent nuclear import of viral proteins66,68,69,75, shows spike-ACE2 disruption at 1nM with microfluidic diffusional sizing33, binds to glycan sites on the SARS-CoV-2 spike protein preventing interaction with blood and epithelial cells and inhibiting hemagglutination36,76, shows dose-dependent inhibition of wildtype and omicron variants31, exhibits dose-dependent inhibition of lung injury56,61, may inhibit SARS-CoV-2 via IMPase inhibition32, may inhibit SARS-CoV-2 induced formation of fibrin clots resistant to degradation5, inhibits SARS-CoV-2 3CLpro49, may inhibit SARS-CoV-2 RdRp activity24, may minimize viral myocarditis by inhibiting NF-κB/p65-mediated inflammation in macrophages55, may be beneficial for COVID-19 ARDS by blocking GSDMD and NET formation77, may inhibit SARS-CoV-2 by disrupting CD147 interaction78-81, shows protection against inflammation, cytokine storm, and mortality in an LPS mouse model sharing key pathological features of severe COVID-1954,82, may be beneficial in severe COVID-19 by binding IGF1 to inhibit the promotion of inflammation, fibrosis, and cell proliferation that leads to lung damage4, may minimize SARS-CoV-2 induced cardiac damage35,43, increases Bifidobacteria which play a key role in the immune system83, has immunomodulatory46 and anti-inflammatory65,84 properties, and has an extensive and very positive safety profile85.
Xu et al., 29 Apr 2024, China, peer-reviewed, 12 authors. Contact: gdawei0123@njau.edu.cn (corresponding author).
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperIvermectinAll
Enhanced In Vitro Antiviral Activity of Ivermectin-Loaded Nanostructured Lipid Carriers against Porcine Epidemic Diarrhea Virus via Improved Intracellular Delivery
Xiaolin Xu, Shasha Gao, Qindan Zuo, Jiahao Gong, Xinhao Song, Yongshi Liu, Jing Xiao, Xiaofeng Zhai, Haifeng Sun, Mingzhi Zhang, Xiuge Gao, Dawei Guo
Pharmaceutics, doi:10.3390/pharmaceutics16050601
Porcine epidemic diarrhea virus (PEDV) is an acute enteric coronavirus, inducing watery diarrhea and high mortality in piglets, leading to huge economic losses in global pig industry. Ivermectin (IVM), an FDA-approved antiparasitic agent, is characterized by high efficacy and wide applicability. However, the poor bioavailability limits its application. Since the virus is parasitized inside the host cells, increasing the intracellular drug uptake can improve antiviral efficacy. Hence, we aimed to develop nanostructured lipid carriers (NLCs) to enhance the antiviral efficacy of IVM. The findings first revealed the capacity of IVM to inhibit the infectivity of PEDV by reducing viral replication with a certain direct inactivation effect. The as-prepared IVM-NLCs possessed hydrodynamic diameter of 153.5 nm with a zeta potential of -31.5 mV and high encapsulation efficiency (95.72%) and drug loading (11.17%). IVM interacted with lipids and was enveloped in lipid carriers with an amorphous state. Furthermore, its encapsulation in NLCs could enhance drug internalization. Meanwhile, IVM-NLCs inhibited PEDV proliferation by up to three orders of magnitude in terms of viral RNA copies, impeding the accumulation of reactive oxygen species and mitigating the mitochondrial dysfunction caused by PEDV infection. Moreover, IVM-NLCs markedly decreased the apoptosis rate of PEDV-induced Vero cells. Hence, IVM-NLCs showed superior inhibitory effect against PEDV compared to free IVM. Together, these results implied that NLCs is an efficient delivery system for IVM to improve its antiviral efficacy against PEDV via enhanced intracellular uptake.
to biological tests, IVM-NLCs exhibited stronger antiviral activity against PEDV than free IVM and reduced PEDV-induced mitochondrial dysfunction, which prevented ROS generation and improved viability of infected Vero cell. Moreover, IVM-NLCs also reduced PEDV-induced cell apoptosis rate. In view of the in vitro results, it would be necessary to carry out in vivo tests as soon as possible, to explore its potential in the clinical treatment of PEDV. Consequently, IVM-NLCs were demonstrated to be a potential drug against PEDV, which might provide a basis for the development of novel drugs to antagonize PEDV. Supplementary Materials: The following supporting information can be downloaded at: https://www. mdpi.com/article/10.3390/pharmaceutics16050601/s1, Figure S1 : Cytotoxicity of Vero cells treated with different concentration of IVM at the appointed time via CCK-8 assay; Figure S2 : Antiviral activity of IVM-NLCs was measured by CCK-8 assay; Table S1 Characterization of as-prepared IVM-NLCs. Author Contributions: Conceptualization, D.G. and X.X.; methodology, X.X., S.G., Q.Z., J.G. and X.S.; formal analysis, X.X., S.G., Q.Z., J.G., X.S., Y.L., J.X., M.Z. and X.G.; investigation, X.X., S.G., Q.Z. and D.G.; resources, Y.L., J.X. and M.Z.; data curation, X.Z. and H.S.; writing-original draft preparation, X.X., S.G., Q.Z., X.S. and J.X.; writing-review and editing, D.G., J.G., Y.L., H.S., X.Z., M.Z. and X.G.; supervision, D.G., X.G., X.Z. and H.S,; project administration,..
References
Aref, Bazeed, Hassan, Hassan, Rashad et al., Biochemical and Molecular Evaluations of Ivermectin Mucoadhesive Nanosuspension Nasal Spray in Reducing Upper Respiratory Symptoms of Mild COVID-19, IJN, doi:10.2147/IJN.S313093
Baram-Pinto, Shukla, Gedanken, Sarid, Inhibition of HSV-1 Attachment, Entry, and Cell-to-Cell Spread by Functionalized Multivalent Gold Nanoparticles, Small, doi:10.1002/smll.200902384
Bugnicourt, Peers, Dalverny, Ladavière, Tunable morphology of lipid/chitosan particle assemblies, J. Colloid. Interface Sci, doi:10.1016/j.jcis.2018.08.098
Caly, Druce, Catton, Jans, Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antivir. Res, doi:10.1016/j.antiviral.2020.104787
Cohen, Livney, Assaraf, Targeted nanomedicine modalities for prostate cancer treatment, Drug Resist. Updates, doi:10.1016/j.drup.2021.100762
Cui, Li, Shi, Origin and evolution of pathogenic coronaviruses, Nat. Rev. Microbiol, doi:10.1038/s41579-018-0118-9
Das, Lee, Chia, Chow, Macbeath et al., Development of microemulsion based topical ivermectin formulations: Pre-formulation and formulation studies, Colloids Surf. B Biointerfaces, doi:10.1016/j.colsurfb.2020.110823
Date, Nimbalkar, Kamat, Mittal, Mahato et al., Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics, J. Control. Release, doi:10.1016/j.jconrel.2017.12.016
Garciafuentes, Torres, Alonso, New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin, Int. J. Pharm, doi:10.1016/j.ijpharm.2004.12.030
Guo, Dou, Li, Zhang, Bhutto et al., Ivermection-loaded solid lipid nanoparticles: Preparation, characterisation, stability and transdermal behaviour, Artif. Cells Nanomed. Biotechnol, doi:10.1080/21691401.2017.1307207
Götz, Magar, Dornfeld, Giese, Pohlmann et al., Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import, Sci. Rep, doi:10.1038/srep23138
Hamanaka, Chandel, Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes, Trends Biochem. Sci, doi:10.1016/j.tibs.2010.04.002
Hou, Ke, Kim, Yoo, Su et al., Engineering a Live Attenuated Porcine Epidemic Diarrhea Virus Vaccine Candidate via Inactivation of the Viral 2 ′ -O.-Methyltransferase and the Endocytosis Signal of the Spike Protein, J. Virol, doi:10.1128/JVI.00406-19
Huang, In situ structure and dynamics of an alphacoronavirus spike protein by cryo-ET and cryo-EM, Nat. Commun, doi:10.1038/s41467-022-32588-3
Jaru-Ampornpan, Jengarn, Wanitchang, Jongkaewwattana, Porcine Epidemic Diarrhea Virus 3C-Like Protease-Mediated Nucleocapsid Processing: Possible Link to Viral Cell Culture Adaptability, J. Virol, doi:10.1128/JVI.01660-16
Jung, Porcine epidemic diarrhea virus (PEDV)_An update on etiology, transmission, pathogenesis, and prevention and control, Virus Res, doi:10.1016/j.virusres.2020.198045
Liu, Liu, Jiang, Yang, Huang et al., Surface-Displayed Porcine IFN-λ3 in Lactobacillus plantarum Inhibits Porcine Enteric Coronavirus Infection of Porcine Intestinal Epithelial Cells, J. Microbiol. Biotechnol, doi:10.4014/jmb.1909.09041
Lv, Liu, Wang, Dang, Qiu et al., Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo, Antivir. Res, doi:10.1016/j.antiviral.2018.09.010
Martin, Robertson, Choudhary, Ivermectin: An Anthelmintic, an Insecticide, and Much More, Trends Parasitol, doi:10.1016/j.pt.2020.10.005
Mastrangelo, Pezzullo, De Burghgraeve, Kaptein, Pastorino et al., Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: New prospects for an old drug, J. Antimicrob. Chemother, doi:10.1093/jac/dks147
Ng, Salim, Chu, Drug repurposing for COVID-19: Approaches, challenges and promising candidates, Pharmacol. Ther, doi:10.1016/j.pharmthera.2021.107930
Pina, Pinto, Sousa, Craig, Zhao, Generation of hydrate forms of paroxetine HCl from the amorphous state: An evaluation of thermodynamic and experimental predictive approaches, Int. J. Pharm, doi:10.1016/j.ijpharm.2014.12.033
Pushpakom, Iorio, Eyers, Escott, Hopper et al., Drug repurposing: Progress, challenges and recommendations, Nat. Rev. Drug Discov, doi:10.1038/nrd.2018.168
Raman, Polli, Prediction of positive food effect: Bioavailability enhancement of BCS class II drugs, Int. J. Pharm, doi:10.1016/j.ijpharm.2016.04.013
Rehman, Tong, Jafari, Assadpour, Shehzad et al., Carotenoid-loaded nanocarriers: A comprehensive review, Adv. Colloid Interface Sci, doi:10.1016/j.cis.2019.102048
Roessler, Knoers, Van Haelst, Van Haaften, Drug Repurposing for Rare Diseases, Trends Pharmacol. Sci, doi:10.1016/j.tips.2021.01.003
Schorey, Cheng, Singh, Smith, Exosomes and other extracellular vesicles in host-pathogen interactions, EMBO Rep, doi:10.15252/embr.201439363
Sun, Chen, Ming, Bo, Shin et al., Porcine Epidemic Diarrhea Virus Infection Induces Caspase-8-Mediated G3BP1 Cleavage and Subverts Stress Granules To Promote Viral Replication, J. Virol, doi:10.1128/JVI.02344-20
Tay, Fraser, Chan, Moreland, Rathore et al., Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin, Antivir. Res, doi:10.1016/j.antiviral.2013.06.002
Thomas, Lundberg, Pinkham, Shechter, Debono et al., Identification of novel antivirals inhibiting recognition of Venezuelan equine encephalitis virus capsid protein by the Importin α/β1 heterodimer through high-throughput screening, Antivir. Res, doi:10.1016/j.antiviral.2018.01.007
Ud-Din, Roujeinikova, Cloning, purification, crystallization and X-ray crystallographic analysis of the periplasmic sensing domain of Pseudomonas fluorescens chemotactic transducer of amino acids type A (CtaA), BST, doi:10.5582/bst.2016.01059
Ungaro, Yzet, Bossuyt, Baert, Vanasek et al., Deep Remission at 1 Year Prevents Progression of Early Crohn's Disease, Gastroenterology, doi:10.1053/j.gastro.2020.03.039
Valencia-Lazcano, Hassan, Pourmadadi, Shamsabadipour, Behzadmehr et al., 5-Fluorouracil nano-delivery systems as a cutting-edge for cancer therapy, Eur. J. Med. Chem, doi:10.1016/j.ejmech.2022.114995
Wang, Gao, Dou, Chen, Li et al., Ivermectin induces PAK1-mediated cytostatic autophagy in breast cancer, Autophagy, doi:10.1080/15548627.2016.1231494
Wang, Kong, Jiao, Dong, Sun et al., EGR1 Suppresses Porcine Epidemic Diarrhea Virus Replication by Regulating IRAV to Degrade Viral Nucleocapsid Protein, J. Virol, doi:10.1128/JVI.00645-21
Wilson, Prud'homme, Nanoparticle size distribution quantification from transmission electron microscopy (TEM) of ruthenium tetroxide stained polymeric nanoparticles, J. Colloid. Interface Sci, doi:10.1016/j.jcis.2021.04.081
Wu, Wu, Zhang, Yuan, Lu et al., Colloid properties of hydrophobic modified alginate: Surface tension, ζ-potential, viscosity and emulsification, Carbohydr. Polym, doi:10.1016/j.carbpol.2017.10.052
Yang, Atkinson, Wang, Lee, Bogoyevitch et al., The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer, Antivir. Res, doi:10.1016/j.antiviral.2020.104760
Ye, Shao, Li, Guo, Zuo et al., Antiviral Activity of Graphene Oxide: How Sharp Edged Structure and Charge Matter, ACS Appl. Mater. Interfaces, doi:10.1021/acsami.5b06876
Zhai, Kong, Zhang, Song, Qin et al., N protein of PEDV plays chess game with host proteins by selective autophagy, Autophagy, doi:10.1080/15548627.2023.2181615
Zhai, Wang, Jiao, Zhang, Li et al., Melatonin and other indoles show antiviral activities against swine coronaviruses in vitro at pharmacological concentrations, J. Pineal Res, doi:10.1111/jpi.12754
Zhang, Chen, Li, Wen, Song et al., Construction of ivermectin producer by domain swaps of avermectin polyketide synthase in Streptomyces avermitilis, Appl. Microbiol. Biotechnol, doi:10.1007/s00253-006-0361-2
Zhang, Yang, Sahito, Li, Peng et al., Nanostructured lipid carriers with exceptional gastrointestinal stability and inhibition of P-gp efflux for improved oral delivery of tilmicosin, Colloids Surf. B Biointerfaces, doi:10.1016/j.colsurfb.2019.110649
Zorov, Juhaszova, Sollott, Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release, Physiol. Rev, doi:10.1152/physrev.00026.2013
{ 'indexed': {'date-parts': [[2024, 5, 3]], 'date-time': '2024-05-03T00:35:16Z', 'timestamp': 1714696516369}, 'reference-count': 44, 'publisher': 'MDPI AG', 'issue': '5', 'license': [ { 'start': { 'date-parts': [[2024, 4, 29]], 'date-time': '2024-04-29T00:00:00Z', 'timestamp': 1714348800000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0/'}], 'funder': [ { 'name': 'Fundamental Research Funds for the Central Universities', 'award': ['KYCXJC2023005', 'KYCYXT2022010']}, {'name': 'Priority Academic Program Development of Jiangsu Higher Education Institutions'}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'abstract': '<jats:p>Porcine epidemic diarrhea virus (PEDV) is an acute enteric coronavirus, inducing ' 'watery diarrhea and high mortality in piglets, leading to huge economic losses in global pig ' 'industry. Ivermectin (IVM), an FDA-approved antiparasitic agent, is characterized by high ' 'efficacy and wide applicability. However, the poor bioavailability limits its application. ' 'Since the virus is parasitized inside the host cells, increasing the intracellular drug ' 'uptake can improve antiviral efficacy. Hence, we aimed to develop nanostructured lipid ' 'carriers (NLCs) to enhance the antiviral efficacy of IVM. The findings first revealed the ' 'capacity of IVM to inhibit the infectivity of PEDV by reducing viral replication with a ' 'certain direct inactivation effect. The as-prepared IVM-NLCs possessed hydrodynamic diameter ' 'of 153.5 nm with a zeta potential of −31.5 mV and high encapsulation efficiency (95.72%) and ' 'drug loading (11.17%). IVM interacted with lipids and was enveloped in lipid carriers with an ' 'amorphous state. Furthermore, its encapsulation in NLCs could enhance drug internalization. ' 'Meanwhile, IVM-NLCs inhibited PEDV proliferation by up to three orders of magnitude in terms ' 'of viral RNA copies, impeding the accumulation of reactive oxygen species and mitigating the ' 'mitochondrial dysfunction caused by PEDV infection. Moreover, IVM-NLCs markedly decreased the ' 'apoptosis rate of PEDV-induced Vero cells. Hence, IVM-NLCs showed superior inhibitory effect ' 'against PEDV compared to free IVM. Together, these results implied that NLCs is an efficient ' 'delivery system for IVM to improve its antiviral efficacy against PEDV via enhanced ' 'intracellular uptake.</jats:p>', 'DOI': '10.3390/pharmaceutics16050601', 'type': 'journal-article', 'created': {'date-parts': [[2024, 5, 2]], 'date-time': '2024-05-02T07:57:56Z', 'timestamp': 1714636676000}, 'page': '601', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Enhanced In Vitro Antiviral Activity of Ivermectin-Loaded Nanostructured Lipid Carriers against ' 'Porcine Epidemic Diarrhea Virus via Improved Intracellular Delivery', 'prefix': '10.3390', 'volume': '16', 'author': [ { 'given': 'Xiaolin', 'family': 'Xu', 'sequence': 'first', 'affiliation': [ { 'name': 'Engineering Center of Innovative Veterinary Drugs, Center for ' 'Veterinary Drug Research and Evaluation, MOE Joint International ' 'Research Laboratory of Animal Health and Food Safety, College of ' 'Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, ' 'Nanjing 210095, China'}]}, { 'given': 'Shasha', 'family': 'Gao', 'sequence': 'additional', 'affiliation': [ { 'name': 'Engineering Center of Innovative Veterinary Drugs, Center for ' 'Veterinary Drug Research and Evaluation, MOE Joint International ' 'Research Laboratory of Animal Health and Food Safety, College of ' 'Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, ' 'Nanjing 210095, China'}]}, { 'given': 'Qindan', 'family': 'Zuo', 'sequence': 'additional', 'affiliation': [ { 'name': 'Engineering Center of Innovative Veterinary Drugs, Center for ' 'Veterinary Drug Research and Evaluation, MOE Joint International ' 'Research Laboratory of Animal Health and Food Safety, College of ' 'Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, ' 'Nanjing 210095, China'}]}, { 'given': 'Jiahao', 'family': 'Gong', 'sequence': 'additional', 'affiliation': [ { 'name': 'Engineering Center of Innovative Veterinary Drugs, Center for ' 'Veterinary Drug Research and Evaluation, MOE Joint International ' 'Research Laboratory of Animal Health and Food Safety, College of ' 'Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, ' 'Nanjing 210095, China'}]}, { 'given': 'Xinhao', 'family': 'Song', 'sequence': 'additional', 'affiliation': [ { 'name': 'Engineering Center of Innovative Veterinary Drugs, Center for ' 'Veterinary Drug Research and Evaluation, MOE Joint International ' 'Research Laboratory of Animal Health and Food Safety, College of ' 'Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, ' 'Nanjing 210095, China'}]}, { 'given': 'Yongshi', 'family': 'Liu', 'sequence': 'additional', 'affiliation': [ { 'name': 'Engineering Center of Innovative Veterinary Drugs, Center for ' 'Veterinary Drug Research and Evaluation, MOE Joint International ' 'Research Laboratory of Animal Health and Food Safety, College of ' 'Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, ' 'Nanjing 210095, China'}]}, { 'given': 'Jing', 'family': 'Xiao', 'sequence': 'additional', 'affiliation': [ { 'name': 'Engineering Center of Innovative Veterinary Drugs, Center for ' 'Veterinary Drug Research and Evaluation, MOE Joint International ' 'Research Laboratory of Animal Health and Food Safety, College of ' 'Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, ' 'Nanjing 210095, China'}]}, { 'given': 'Xiaofeng', 'family': 'Zhai', 'sequence': 'additional', 'affiliation': [ { 'name': 'Engineering Center of Innovative Veterinary Drugs, Center for ' 'Veterinary Drug Research and Evaluation, MOE Joint International ' 'Research Laboratory of Animal Health and Food Safety, College of ' 'Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, ' 'Nanjing 210095, China'}, { 'name': 'Academy for Advanced Interdisciplinary Studies, Nanjing ' 'Agricultural University, Nanjing 210095, China'}]}, { 'given': 'Haifeng', 'family': 'Sun', 'sequence': 'additional', 'affiliation': [ { 'name': 'Engineering Center of Innovative Veterinary Drugs, Center for ' 'Veterinary Drug Research and Evaluation, MOE Joint International ' 'Research Laboratory of Animal Health and Food Safety, College of ' 'Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, ' 'Nanjing 210095, China'}]}, { 'ORCID': 'http://orcid.org/0000-0002-8439-8989', 'authenticated-orcid': False, 'given': 'Mingzhi', 'family': 'Zhang', 'sequence': 'additional', 'affiliation': [ { 'name': 'Jiangsu Key Laboratory of Pesticide Science, College of ' 'Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing ' '210095, China'}]}, { 'given': 'Xiuge', 'family': 'Gao', 'sequence': 'additional', 'affiliation': [ { 'name': 'Engineering Center of Innovative Veterinary Drugs, Center for ' 'Veterinary Drug Research and Evaluation, MOE Joint International ' 'Research Laboratory of Animal Health and Food Safety, College of ' 'Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, ' 'Nanjing 210095, China'}]}, { 'given': 'Dawei', 'family': 'Guo', 'sequence': 'additional', 'affiliation': [ { 'name': 'Engineering Center of Innovative Veterinary Drugs, Center for ' 'Veterinary Drug Research and Evaluation, MOE Joint International ' 'Research Laboratory of Animal Health and Food Safety, College of ' 'Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, ' 'Nanjing 210095, China'}]}], 'member': '1968', 'published-online': {'date-parts': [[2024, 4, 29]]}, 'reference': [ { 'key': 'ref_1', 'doi-asserted-by': 'crossref', 'first-page': '181', 'DOI': '10.1038/s41579-018-0118-9', 'article-title': 'Origin and evolution of pathogenic coronaviruses', 'volume': '17', 'author': 'Cui', 'year': '2019', 'journal-title': 'Nat. Rev. Microbiol.'}, { 'key': 'ref_2', 'doi-asserted-by': 'crossref', 'first-page': '104787', 'DOI': '10.1016/j.antiviral.2020.104787', 'article-title': 'The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 ' 'in vitro', 'volume': '178', 'author': 'Caly', 'year': '2020', 'journal-title': 'Antivir. Res.'}, { 'key': 'ref_3', 'doi-asserted-by': 'crossref', 'first-page': 'e02344-20', 'DOI': '10.1128/JVI.02344-20', 'article-title': 'Porcine Epidemic Diarrhea Virus Infection Induces Caspase-8-Mediated ' 'G3BP1 Cleavage and Subverts Stress Granules To Promote Viral ' 'Replication', 'volume': '95', 'author': 'Sun', 'year': '2021', 'journal-title': 'J. Virol.'}, { 'key': 'ref_4', 'doi-asserted-by': 'crossref', 'first-page': '198045', 'DOI': '10.1016/j.virusres.2020.198045', 'article-title': 'Porcine epidemic diarrhea virus (PEDV)_An update on etiology, ' 'transmission, pathogenesis, and prevention and control', 'volume': '286', 'author': 'Jung', 'year': '2020', 'journal-title': 'Virus Res.'}, { 'key': 'ref_5', 'doi-asserted-by': 'crossref', 'first-page': '4877', 'DOI': '10.1038/s41467-022-32588-3', 'article-title': 'In situ structure and dynamics of an alphacoronavirus spike protein by ' 'cryo-ET and cryo-EM', 'volume': '13', 'author': 'Huang', 'year': '2022', 'journal-title': 'Nat. Commun.'}, { 'key': 'ref_6', 'doi-asserted-by': 'crossref', 'first-page': 'e00406-19', 'DOI': '10.1128/JVI.00406-19', 'article-title': 'Engineering a Live Attenuated Porcine Epidemic Diarrhea Virus Vaccine ' 'Candidate via Inactivation of the Viral 2′-O.-Methyltransferase and the ' 'Endocytosis Signal of the Spike Protein', 'volume': '93', 'author': 'Hou', 'year': '2019', 'journal-title': 'J. Virol.'}, { 'key': 'ref_7', 'doi-asserted-by': 'crossref', 'first-page': 'e12754', 'DOI': '10.1111/jpi.12754', 'article-title': 'Melatonin and other indoles show antiviral activities against swine ' 'coronaviruses in vitro at pharmacological concentrations', 'volume': '71', 'author': 'Zhai', 'year': '2021', 'journal-title': 'J. Pineal Res.'}, { 'key': 'ref_8', 'doi-asserted-by': 'crossref', 'first-page': 'e00645-21', 'DOI': '10.1128/JVI.00645-21', 'article-title': 'EGR1 Suppresses Porcine Epidemic Diarrhea Virus Replication by ' 'Regulating IRAV to Degrade Viral Nucleocapsid Protein', 'volume': '95', 'author': 'Wang', 'year': '2021', 'journal-title': 'J. Virol.'}, { 'key': 'ref_9', 'doi-asserted-by': 'crossref', 'first-page': '255', 'DOI': '10.1016/j.tips.2021.01.003', 'article-title': 'Drug Repurposing for Rare Diseases', 'volume': '42', 'author': 'Roessler', 'year': '2021', 'journal-title': 'Trends Pharmacol. Sci.'}, { 'key': 'ref_10', 'doi-asserted-by': 'crossref', 'first-page': '107930', 'DOI': '10.1016/j.pharmthera.2021.107930', 'article-title': 'Drug repurposing for COVID-19: Approaches, challenges and promising ' 'candidates', 'volume': '228', 'author': 'Ng', 'year': '2021', 'journal-title': 'Pharmacol. Ther.'}, { 'key': 'ref_11', 'doi-asserted-by': 'crossref', 'first-page': '139', 'DOI': '10.1053/j.gastro.2020.03.039', 'article-title': 'Deep Remission at 1 Year Prevents Progression of Early Crohn’s Disease', 'volume': '159', 'author': 'Ungaro', 'year': '2020', 'journal-title': 'Gastroenterology'}, { 'key': 'ref_12', 'doi-asserted-by': 'crossref', 'first-page': '41', 'DOI': '10.1038/nrd.2018.168', 'article-title': 'Drug repurposing: Progress, challenges and recommendations', 'volume': '18', 'author': 'Pushpakom', 'year': '2019', 'journal-title': 'Nat. Rev. Drug Discov.'}, { 'key': 'ref_13', 'doi-asserted-by': 'crossref', 'first-page': '4063', 'DOI': '10.2147/IJN.S313093', 'article-title': 'Clinical, Biochemical and Molecular Evaluations of Ivermectin ' 'Mucoadhesive Nanosuspension Nasal Spray in Reducing Upper Respiratory ' 'Symptoms of Mild COVID-19', 'volume': '16', 'author': 'Aref', 'year': '2021', 'journal-title': 'IJN'}, { 'key': 'ref_14', 'doi-asserted-by': 'crossref', 'first-page': '986', 'DOI': '10.1007/s00253-006-0361-2', 'article-title': 'Construction of ivermectin producer by domain swaps of avermectin ' 'polyketide synthase in Streptomyces avermitilis', 'volume': '72', 'author': 'Zhang', 'year': '2006', 'journal-title': 'Appl. Microbiol. Biotechnol.'}, { 'key': 'ref_15', 'doi-asserted-by': 'crossref', 'first-page': '2498', 'DOI': '10.1080/15548627.2016.1231494', 'article-title': 'Ivermectin induces PAK1-mediated cytostatic autophagy in breast cancer', 'volume': '12', 'author': 'Wang', 'year': '2016', 'journal-title': 'Autophagy'}, { 'key': 'ref_16', 'doi-asserted-by': 'crossref', 'first-page': '48', 'DOI': '10.1016/j.pt.2020.10.005', 'article-title': 'Ivermectin: An Anthelmintic, an Insecticide, and Much More', 'volume': '37', 'author': 'Martin', 'year': '2021', 'journal-title': 'Trends Parasitol.'}, { 'key': 'ref_17', 'doi-asserted-by': 'crossref', 'first-page': '55', 'DOI': '10.1016/j.antiviral.2018.09.010', 'article-title': 'Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance ' 'into the nucleus and proliferation of the virus in vitro and vivo', 'volume': '159', 'author': 'Lv', 'year': '2018', 'journal-title': 'Antivir. Res.'}, { 'key': 'ref_18', 'doi-asserted-by': 'crossref', 'first-page': '301', 'DOI': '10.1016/j.antiviral.2013.06.002', 'article-title': 'Nuclear localization of dengue virus (DENV) 1–4 non-structural protein ' '5; protection against all 4 DENV serotypes by the inhibitor Ivermectin', 'volume': '99', 'author': 'Tay', 'year': '2013', 'journal-title': 'Antivir. Res.'}, { 'key': 'ref_19', 'doi-asserted-by': 'crossref', 'first-page': '1884', 'DOI': '10.1093/jac/dks147', 'article-title': 'Ivermectin is a potent inhibitor of flavivirus replication specifically ' 'targeting NS3 helicase activity: New prospects for an old drug', 'volume': '67', 'author': 'Mastrangelo', 'year': '2012', 'journal-title': 'J. Antimicrob. Chemother.'}, { 'key': 'ref_20', 'doi-asserted-by': 'crossref', 'first-page': '23138', 'DOI': '10.1038/srep23138', 'article-title': 'Influenza A viruses escape from MxA restriction at the expense of ' 'efficient nuclear vRNP import', 'volume': '6', 'author': 'Magar', 'year': '2016', 'journal-title': 'Sci. Rep.'}, { 'key': 'ref_21', 'doi-asserted-by': 'crossref', 'first-page': '8', 'DOI': '10.1016/j.antiviral.2018.01.007', 'article-title': 'Identification of novel antivirals inhibiting recognition of Venezuelan ' 'equine encephalitis virus capsid protein by the Importin α/β1 ' 'heterodimer through high-throughput screening', 'volume': '151', 'author': 'Thomas', 'year': '2018', 'journal-title': 'Antivir. Res.'}, { 'key': 'ref_22', 'doi-asserted-by': 'crossref', 'first-page': '104760', 'DOI': '10.1016/j.antiviral.2020.104760', 'article-title': 'The broad spectrum antiviral ivermectin targets the host nuclear ' 'transport importin α/β1 heterodimer', 'volume': '177', 'author': 'Yang', 'year': '2020', 'journal-title': 'Antivir. Res.'}, { 'key': 'ref_23', 'doi-asserted-by': 'crossref', 'unstructured': 'Das, S., Lee, S.H., Chia, V.D., Chow, P.S., Macbeath, C., Liu, Y., and ' 'Shlieout, G. (2020). Development of microemulsion based topical ' 'ivermectin formulations: Pre-formulation and formulation studies. ' 'Colloids Surf. B Biointerfaces, 189.', 'DOI': '10.1016/j.colsurfb.2020.110823'}, { 'key': 'ref_24', 'doi-asserted-by': 'crossref', 'first-page': '110', 'DOI': '10.1016/j.ijpharm.2016.04.013', 'article-title': 'Prediction of positive food effect: Bioavailability enhancement of BCS ' 'class II drugs', 'volume': '506', 'author': 'Raman', 'year': '2016', 'journal-title': 'Int. J. Pharm.'}, { 'key': 'ref_25', 'doi-asserted-by': 'crossref', 'first-page': '122', 'DOI': '10.1016/j.ijpharm.2004.12.030', 'article-title': 'New surface-modified lipid nanoparticles as delivery vehicles for ' 'salmon calcitonin', 'volume': '296', 'author': 'Garciafuentes', 'year': '2005', 'journal-title': 'Int. J. Pharm.'}, { 'key': 'ref_26', 'doi-asserted-by': 'crossref', 'first-page': '114995', 'DOI': '10.1016/j.ejmech.2022.114995', 'article-title': '5-Fluorouracil nano-delivery systems as a cutting-edge for cancer ' 'therapy', 'volume': '246', 'author': 'Hassan', 'year': '2023', 'journal-title': 'Eur. J. Med. Chem.'}, { 'key': 'ref_27', 'doi-asserted-by': 'crossref', 'first-page': '102048', 'DOI': '10.1016/j.cis.2019.102048', 'article-title': 'Carotenoid-loaded nanocarriers: A comprehensive review', 'volume': '275', 'author': 'Rehman', 'year': '2020', 'journal-title': 'Adv. Colloid Interface Sci.'}, { 'key': 'ref_28', 'doi-asserted-by': 'crossref', 'first-page': '60', 'DOI': '10.1016/j.jconrel.2017.12.016', 'article-title': 'Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics', 'volume': '271', 'author': 'Date', 'year': '2018', 'journal-title': 'J. Control. Release'}, { 'key': 'ref_29', 'doi-asserted-by': 'crossref', 'unstructured': 'Zhang, Q., Yang, H., Sahito, B., Li, X., Peng, L., Gao, X., Ji, H., ' 'Wang, L., Jiang, S., and Guo, D. (2020). Nanostructured lipid carriers ' 'with exceptional gastrointestinal stability and inhibition of P-gp ' 'efflux for improved oral delivery of tilmicosin. Colloids Surf. B ' 'Biointerfaces, 187.', 'DOI': '10.1016/j.colsurfb.2019.110649'}, { 'key': 'ref_30', 'doi-asserted-by': 'crossref', 'first-page': '255', 'DOI': '10.1080/21691401.2017.1307207', 'article-title': 'Ivermection-loaded solid lipid nanoparticles: Preparation, ' 'characterisation, stability and transdermal behaviour', 'volume': '46', 'author': 'Guo', 'year': '2018', 'journal-title': 'Artif. Cells Nanomed. Biotechnol.'}, { 'key': 'ref_31', 'doi-asserted-by': 'crossref', 'first-page': '1044', 'DOI': '10.1002/smll.200902384', 'article-title': 'Inhibition of HSV-1 Attachment, Entry, and Cell-to-Cell Spread by ' 'Functionalized Multivalent Gold Nanoparticles', 'volume': '6', 'author': 'Shukla', 'year': '2010', 'journal-title': 'Small'}, { 'key': 'ref_32', 'doi-asserted-by': 'crossref', 'first-page': '21571', 'DOI': '10.1021/acsami.5b06876', 'article-title': 'Antiviral Activity of Graphene Oxide: How Sharp Edged Structure and ' 'Charge Matter', 'volume': '7', 'author': 'Ye', 'year': '2015', 'journal-title': 'ACS Appl. Mater. Interfaces'}, { 'key': 'ref_33', 'doi-asserted-by': 'crossref', 'first-page': '515', 'DOI': '10.4014/jmb.1909.09041', 'article-title': 'Surface-Displayed Porcine IFN-λ3 in Lactobacillus plantarum Inhibits ' 'Porcine Enteric Coronavirus Infection of Porcine Intestinal Epithelial ' 'Cells', 'volume': '30', 'author': 'Liu', 'year': '2020', 'journal-title': 'J. Microbiol. Biotechnol.'}, { 'key': 'ref_34', 'doi-asserted-by': 'crossref', 'first-page': '2338', 'DOI': '10.1080/15548627.2023.2181615', 'article-title': 'N protein of PEDV plays chess game with host proteins by selective ' 'autophagy', 'volume': '19', 'author': 'Zhai', 'year': '2023', 'journal-title': 'Autophagy'}, { 'key': 'ref_35', 'doi-asserted-by': 'crossref', 'first-page': 'e01660-16', 'DOI': '10.1128/JVI.01660-16', 'article-title': 'Porcine Epidemic Diarrhea Virus 3C-Like Protease-Mediated Nucleocapsid ' 'Processing: Possible Link to Viral Cell Culture Adaptability', 'volume': '91', 'author': 'Jengarn', 'year': '2017', 'journal-title': 'J. Virol.'}, { 'key': 'ref_36', 'doi-asserted-by': 'crossref', 'first-page': '56', 'DOI': '10.1016/j.carbpol.2017.10.052', 'article-title': 'Colloid properties of hydrophobic modified alginate: Surface tension, ' 'ζ-potential, viscosity and emulsification', 'volume': '181', 'author': 'Wu', 'year': '2018', 'journal-title': 'Carbohydr. Polym.'}, { 'key': 'ref_37', 'doi-asserted-by': 'crossref', 'first-page': '208', 'DOI': '10.1016/j.jcis.2021.04.081', 'article-title': 'Nanoparticle size distribution quantification from transmission ' 'electron microscopy (TEM) of ruthenium tetroxide stained polymeric ' 'nanoparticles', 'volume': '604', 'author': 'Wilson', 'year': '2021', 'journal-title': 'J. Colloid. Interface Sci.'}, { 'key': 'ref_38', 'doi-asserted-by': 'crossref', 'first-page': '105', 'DOI': '10.1016/j.jcis.2018.08.098', 'article-title': 'Tunable morphology of lipid/chitosan particle assemblies', 'volume': '534', 'author': 'Bugnicourt', 'year': '2019', 'journal-title': 'J. Colloid. Interface Sci.'}, { 'key': 'ref_39', 'doi-asserted-by': 'crossref', 'first-page': '114', 'DOI': '10.1016/j.ijpharm.2014.12.033', 'article-title': 'Generation of hydrate forms of paroxetine HCl from the amorphous state: ' 'An evaluation of thermodynamic and experimental predictive approaches', 'volume': '481', 'author': 'Pina', 'year': '2015', 'journal-title': 'Int. J. Pharm.'}, { 'key': 'ref_40', 'doi-asserted-by': 'crossref', 'first-page': '320', 'DOI': '10.5582/bst.2016.01059', 'article-title': 'Cloning, purification, crystallization and X-ray crystallographic ' 'analysis of the periplasmic sensing domain of Pseudomonas fluorescens ' 'chemotactic transducer of amino acids type A (CtaA)', 'volume': '10', 'author': 'Roujeinikova', 'year': '2016', 'journal-title': 'BST'}, { 'key': 'ref_41', 'doi-asserted-by': 'crossref', 'first-page': '24', 'DOI': '10.15252/embr.201439363', 'article-title': 'Exosomes and other extracellular vesicles in host–pathogen interactions', 'volume': '16', 'author': 'Schorey', 'year': '2015', 'journal-title': 'EMBO Rep.'}, { 'key': 'ref_42', 'doi-asserted-by': 'crossref', 'first-page': '100762', 'DOI': '10.1016/j.drup.2021.100762', 'article-title': 'Targeted nanomedicine modalities for prostate cancer treatment', 'volume': '56', 'author': 'Cohen', 'year': '2021', 'journal-title': 'Drug Resist. Updates'}, { 'key': 'ref_43', 'doi-asserted-by': 'crossref', 'first-page': '505', 'DOI': '10.1016/j.tibs.2010.04.002', 'article-title': 'Mitochondrial reactive oxygen species regulate cellular signaling and ' 'dictate biological outcomes', 'volume': '35', 'author': 'Hamanaka', 'year': '2010', 'journal-title': 'Trends Biochem. Sci.'}, { 'key': 'ref_44', 'doi-asserted-by': 'crossref', 'first-page': '909', 'DOI': '10.1152/physrev.00026.2013', 'article-title': 'Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release', 'volume': '94', 'author': 'Zorov', 'year': '2014', 'journal-title': 'Physiol. Rev.'}], 'container-title': 'Pharmaceutics', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.mdpi.com/1999-4923/16/5/601/pdf', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 5, 2]], 'date-time': '2024-05-02T08:27:48Z', 'timestamp': 1714638468000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.mdpi.com/1999-4923/16/5/601'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 4, 29]]}, 'references-count': 44, 'journal-issue': {'issue': '5', 'published-online': {'date-parts': [[2024, 5]]}}, 'alternative-id': ['pharmaceutics16050601'], 'URL': 'http://dx.doi.org/10.3390/pharmaceutics16050601', 'relation': {}, 'ISSN': ['1999-4923'], 'subject': [], 'container-title-short': 'Pharmaceutics', 'published': {'date-parts': [[2024, 4, 29]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit