Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All ivermectin studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19ivm.org COVID-19 treatment researchIvermectinIvermectin (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

The mechanisms of action of ivermectin against SARS-CoV-2—an extensive review

Zaidi et al., The Journal of Antibiotics, doi:10.1038/s41429-021-00491-6
Dec 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Ivermectin for COVID-19
4th treatment shown to reduce risk in August 2020
 
*, now known with p < 0.00000000001 from 100 studies, recognized in 22 countries.
No treatment is 100% effective. Protocols combine complementary and synergistic treatments. * >10% efficacy in meta analysis with ≥3 clinical studies.
3,800+ studies for 60+ treatments. c19ivm.org
Extensive review of 20 mechanisms of action of ivermectin for SARS-CoV-2.
Zaidi et al., 21 Dec 2021, peer-reviewed, 2 authors.
This PaperIvermectinAll
The mechanisms of action of ivermectin against SARS-CoV-2—an extensive review
Asiya Kamber Zaidi, Puya Dehgani-Mobaraki
The Journal of Antibiotics, doi:10.1038/s41429-021-00491-6
Considering the urgency of the ongoing COVID-19 pandemic, detection of new mutant strains and potential re-emergence of novel coronaviruses, repurposing of drugs such as ivermectin could be worthy of attention. This review article aims to discuss the probable mechanisms of action of ivermectin against SARS-CoV-2 by summarizing the available literature over the years. A schematic of the key cellular and biomolecular interactions between ivermectin, host cell, and SARS-CoV-2 in COVID-19 pathogenesis and prevention of complications has been proposed.
Conflict of interest The authors declare no competing interests. Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Ackermann, Verleden, Kuehnel, Haverich, Welte et al., Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19, N Engl J Med, doi:10.1056/NEJMoa2015432
Andersson, Ottestad, Tracey, Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19?, Mol Med, doi:10.1186/s10020-020-00172-4pmid
Arshad, Pertinez, Box, Prioritization of anti-SARS-Cov-2 drug repurposing opportunities based on plasma and target site concentrations derived from their established human pharmacokinetics, Clin Pharmacol Ther, doi:10.1002/cpt.1909
Bennett, Zhao, Bosard, Imperiale, Role of a nuclear localization signal on the minor capsid proteins VP2 and VP3 in BKPyV nuclear entry, Virology, doi:10.1016/j.virol.2014.10.013.
Bharadwaj, Kasembeli, Robinson, Tweardy, Targeting janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: rationale, progress, and caution, Pharm Rev
Caly, Druce, Catton, Jans, Wagstaff, The FDAapproved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Res, doi:10.1016/j.antiviral.2020.104787
Canga, The pharmacokinetics and interactions of ivermectin in humans-a mini-review, AAPS J, doi:10.1208/s12248-007-9000-9.
Chandler, Serious neurological adverse events after ivermectin-do they occur beyond the indication of onchocerciasis?, Am J Trop Med Hyg, doi:10.4269/ajtmh.17-0042.
Chen, Zheng, Liu, Yan, Xu et al., Plasma CRP level is positively associated with the severity of COVID-19, Ann Clin Microbiol Antimicrob
Choudhury, Das, Patra, Bhattacharya, Ghosh et al., Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: an in silico approach, Future Virol, doi:10.2217/fvl-2020-0342
Ci, Li, Yu, Avermectin exerts anti-inflammatory effect by downregulating the nuclear transcription factor kappa-B and mitogen-activated protein kinase activation pathway, Fundam Clin Pharm
Crump, Ōmura, Ivermectin, 'wonder drug' from Japan: the human use perspective, Proc Jpn Acad Ser B Phys Biol Sci, doi:10.2183/pjab.87.13.
Diao, Wang, Tan, Chen, Liu et al., Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19), Front Immunol
Dominguez-Gomez, Chavez-Blanco, Medina-Franco, Saldivar-Gonzalez, Flores-Torrontegui et al., Ivermectin as an inhibitor of cancer stem-like cells, Mol Med Rep, doi:10.3892/mmr.2017.8231.
Dou, Chen, Wang, Yuan, Lei et al., Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer, Cancer Res
Dueñas-González, Juárez-Rodríguez, Ivermectin: potential repurposing of a versatile antiparasitic as a novel anticancer, doi:10.5772/intechopen.99813
Edwards, Dingsdale, Helsby, Orme, Breckenridge, The relative systemic availability of ivermectin after administration as capsule, tablet, and oral solution, Eur J Clin Pharm
Eweas, Alhossary, As, Molecular docking reveals ivermectin and remdesivir as potential repurposed drugs against SARS-CoV-2, Front Microbiol, doi:10.3389/fmicb.2020.592908
Freedman, Chapter 4-Ionophores in planar lipid bilayers
Frieman, Yount, Heise, Kopecky-Bromberg, Palese et al., Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/golgi membrane, J Virol
Fulcher, Jans, Regulation of nucleocytoplasmic trafficking of viral proteins; an integral role in pathogenesis?, Biochem Biophys Acta Mol Cell Res
Gharebaghi, Heidary, COVID-19 and Iran: swimming with hands tied!, Swiss Med Wkly, doi:10.4414/smw.2020.20242.
Hadjadj, Yatim, Barnabei, Corneau, Boussier et al., Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients, Science
Heidary, Gharebaghi, Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen, J Antibiot, doi:10.1038/s41429-020-0336-z.
Jiang, Wang, Sun, Wu, Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway, J Exp Clin Cancer Res, doi:10.1186/s13046-019-1251-7
Juarez, Schcolnik-Cabrera, Dueñas-Gonzalez, The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug, Am J Cancer Res
Kim, Choi, Kim, Lee, The PAK1-Stat3 signaling pathway activates IL-6 gene transcription and human breast cancer stem cell formation, Cancers
Kircik, Rosso, Layton, Schauber, Over 25 years of clinical experience with ivermectin: an overview of safety for an increasing number of indications, J Drugs Dermatol
Klotz, Ogbuokiri, Okonkwo, Ivermectin binds avidly to plasma proteins, Eur J Clin Pharmacol, doi:10.1007/BF00316107.
Konno, Kimura, Uriu, Fukushi, Irie et al., SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is further increased by a naturally occurring elongation variant, Cell Rep, doi:10.1016/j.celrep.2020.108185
Kumar, Jeyaraman, Jain, Anudeep, A wonder drug in the arsenal against COVID-19: medication evidence from ivermectin, J Adv Med Med Res
Layhadi, Turner, Crossman, Fountain, ATP evokes Ca 2+ responses and CXCL5 secretion via P2X4 receptor activation in human monocyte-derived macrophages, J Immunol, doi:10.4049/jimmunol.1700965.
Lehrer, Rheinstein, Ivermectin docks to the SARS-CoV-2 spike receptor-binding domain attached to ACE2, Vivo, doi:10.21873/invivo.12134
Liu, Zhang, Joo, Sun, NF-κB signaling in inflammation, Signal Transduct Target Ther, doi:10.1038/sigtrans.2017.23
Ma, Wu, Shaw, Gao, Wang et al., Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex, Proc Natl Acad Sci
Martin, Robertson, Choudhary, Ivermectin: an anthelmintic, an insecticide, and much more, Trends Parasitol, doi:10.1016/j.pt.2020.10.005
Matsuyama, Kubli, Yoshinaga, An aberrant STAT pathway is central to COVID-19, Cell Death Differ, doi:10.1038/s41418-020-00633-7.
Melo, Lazarini, Larrous, Attenuation of clinical and immunological outcomes during SARS-CoV-2 infection by ivermectin, EMBO Mol Med, doi:10.15252/emmm.202114122.
Mielech, Kilianski, Baez-Santos, Mesecar, Baker, MERS-CoV papain-like protease has deISGylating and deubiquitinating activities, Virology
Mody, Ho, Wills, Mawri, Lawson et al., Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents, Commun Biol, doi:10.1038/s42003-020-01577-x
Nagai, Satomi, Abiru, Miyamoto, Nagasawa et al., Antihypertrophic effects of small molecules that maintain mitochondrial ATP levels under hypoxia, EBio-Medicine, doi:10.1016/j.ebiom.2017.09.022
Novac, Challenges and opportunities of drug repositioning, Trends Pharm Sci
Park, Iwasaki, Type I. and type III interferons-induction, signaling, evasion, and application to combat COVID-19, Cell Host Microbe
Priel, Silberberg, Mechanism of ivermectin facilitation of human P2X4 receptor channels, J Gen Physiol, doi:10.1085/jgp.200308986
Principletrial, Join the PRINCIPLE
Raza, Shahin, Zhai, Ivermectin inhibits bovine herpesvirus 1 DNA polymerase nuclear import and interferes with viral replication, Microorganisms, doi:10.3390/microorganisms8030409
Rizzo, Ivermectin, antiviral properties and COVID-19: a possible new mechanism of action, Naunyn Schmiedebergs Arch Pharm, doi:10.1007/s00210-020-01902-5.
Scheim, Ivermectin for COVID-19 Treatment: Clinical Response at Quasi-Threshold Doses Via Hypothesized Alleviation of CD147-Mediated Vascular Occlusion
Sekimoto, Imamoto, Nakajima, Hirano, Yoneda, Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1, EMBO J
Seth, Mas, Conod, Mueller, Siems et al., LongLasting WNT-TCF response blocking and epigenetic modifying activities of withanolide f in human cancer cells, PLoS ONE
Stokes, Layhadi, Bibic, Dhuna, Fountain, P2X4 receptor function in the nervous system and current breakthroughs in pharmacology, Front Pharm, doi:10.3389/fphar.2017.00291.
Swargiary, Ivermectin as a promising RNA-dependent RNA polymerase inhibitor and a therapeutic drug against SARS-CoV2: evidence from in silico studies, doi:10.21203/rs.3.rs-73308/v1
V'kovski, Kratzel, Steiner, Coronavirus biology and replication: implications for SARS-CoV-2, Nat Rev Microbiol, doi:10.1038/s41579-020-00468-6.
Verrest, Dorlo, Lack of clinical pharmacokinetic studies to optimize the treatment of neglected tropical diseases: a systematic review, Clin Pharmacokinet
Wagstaff, Rawlinson, Hearps, Jans, An AlphaScreen(R)-based assay for high-throughput screening for specific inhibitors of nuclear import, J Biomol Screen, doi:10.1177/1087057110390360.
Wang, Zhang, Wu, Niu, Song et al., Structural and functional basis of SARS-CoV-2 entry by using human ACE2, Cell, doi:10.1016/j.cell.2020.03.045.
Wu, Fossali, Hypoalbuminemia in COVID-19: assessing the hypothesis for underlying pulmonary capillary leakage, J Intern Med, doi:10.1111/joim.13208
Wu, Peng, Huang, Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China, Cell Host Microbe, doi:10.1016/j.chom.2020.02.001
Xydakis, Dehgani-Mobaraki, Holbrook, Smell and taste dysfunction in patients with COVID-19, Lancet Infect Dis, doi:10.1016/S1473-3099(20)30293-0
Yagisawa, Foster, Hanaki, Ōmura, Global trends in clinical studies of ivermectin in COVID-19, Jpn J Antibiotics
Yan, Ci, Chen, Anti-inflammatory effects of ivermectin in mouse model of allergic asthma, Inflamm Res
Yang, Atkinson, Wang, Lee, Bogoyevitch et al., The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer, Antivir Res
Yang, Chu, Hou, Chai, Shuai et al., Attenuated interferon and pro-inflammatory response in SARSCoV-2-infected human dendritic cells is associated with viral antagonism of STAT1 phosphorylation, J Infect Dis, doi:10.1093/infdis/jiaa356
Zaidi, Dawoodi, Pirro, Monti, Mobaraki, Key role of annexin A2 and plasmin in COVID-19 pathophysiology, clinical presentation and outcomes-a review, Ital J Prev, Diagn Ther Med, doi:10.30459/2020-24
Zhang, Song, Ci, Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice, Inflamm Res, doi:10.1007/s00011-008-8007-8
Zheng, Ma, Zhang, COVID-19 and the cardiovascular system, Nat Rev Cardiol, doi:10.1038/s41569-020-0360-5.
Zheng, Peng, Xu, Zhao, Liu et al., Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis, J Infect, doi:10.1016/j.jinf.2020.04.021
Zheng, Yu, Feng, Lou, Zou, Viral load dynamics and disease severity in patients infected with SARSCoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study, BMJ
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit