Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19ivm.org COVID-19 treatment researchIvermectinIvermectin (more..)
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

 

Rho-GTPases subfamily: cellular defectors orchestrating viral infection

Zhang et al., Cellular & Molecular Biology Letters, doi:10.1186/s11658-025-00722-w, May 2025
https://c19ivm.org/zhang43.html
Ivermectin for COVID-19
4th treatment shown to reduce risk in August 2020, now with p < 0.00000000001 from 105 studies, recognized in 24 countries.
No treatment is 100% effective. Protocols combine treatments.
5,800+ studies for 172 treatments. c19ivm.org
Review of Rho-GTPases as pivotal host factors commandeered by SARS-CoV-2 and other viruses, noting ivermectin as one of many compounds targeting this axis. Authors list ivermectin + atorvastatin as agents that suppress RhoA/CDC42 signaling; in cell-culture models this combination interfered with nuclear import and vesicle trafficking, key steps for coronavirus replication, thereby curbing viral growth. By disrupting cytoskeleton-dependent transport processes rather than viral proteins directly, the review contends that ivermectin exemplifies a host-directed strategy that could complement classical antivirals and curb resistance.
Reviews covering ivermectin for COVID-19 include1-48.
Zhang et al., 2 May 2025, peer-reviewed, 6 authors. Contact: duanhong0924@126.com.
Abstract: Zhang et al. Cellular & Molecular Biology Letters (2025) 30:55 https://doi.org/10.1186/s11658-025-00722-w Cellular & Molecular Biology Letters Open Access REVIEW Rho‑GTPases subfamily: cellular defectors orchestrating viral infection Beibei Zhang1† , Shuli Li1†, Juntao Ding1, Jingxia Guo2, Zhenghai Ma1, Hong Duan3* † Beibei Zhang and Shuli Li have contributed equally to this work and share first authorship. *Correspondence: duanhong0924@126.com 1 Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China 2 Disease Prevention and Control Center of Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China 3 College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China Abstract Ras homolog gene family-guanosine triphosphatases (Rho-GTPases), key molecular switches regulating cytoskeletal dynamics and cellular signaling, play a pivotal role in viral infections by modulating critical processes such as viral entry, replication, and release. This review elucidates the intricate mechanisms through which Rho-GTPases, via interactions with guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and other signaling pathways, including the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), rat sarcoma (Ras), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, facilitate viral pathogenesis. Specific viruses, such as influenza A virus (IAV), herpesviruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), exploit Rho-GTPase-mediated cytoskeletal reorganization to enhance infectivity. For example, Rho-GTPases promote actin remodeling and membrane fusion, which are essential for viral entry and intracellular transport. Furthermore, Rho-GTPases modulate immune responses, often suppressing antiviral defenses to favor viral replication. Despite these insights, the molecular mechanisms underlying Rho-GTPase regulation during viral infections remain incompletely understood. Future research should focus on delineating the precise roles of Rho-GTPases in distinct viral life cycles, uncovering novel regulatory mechanisms, and developing targeted antiviral therapies that selectively inhibit Rho-GTPase signaling without compromising host cell functions. Such advancements could pave the way for broad-spectrum antiviral strategies, particularly against viruses that heavily rely on cytoskeletal manipulation for infection. Keywords: Rho-GTPases, Molecule switch, Viral infection, Regulatory mechanism, Therapeutic target
DOI record: { "DOI": "10.1186/s11658-025-00722-w", "ISSN": [ "1689-1392" ], "URL": "http://dx.doi.org/10.1186/s11658-025-00722-w", "abstract": "<jats:title>Abstract</jats:title>\n <jats:p>Ras homolog gene family-guanosine triphosphatases (Rho-GTPases), key molecular switches regulating cytoskeletal dynamics and cellular signaling, play a pivotal role in viral infections by modulating critical processes such as viral entry, replication, and release. This review elucidates the intricate mechanisms through which Rho-GTPases, via interactions with guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and other signaling pathways, including the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), rat sarcoma (Ras), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, facilitate viral pathogenesis. Specific viruses, such as influenza A virus (IAV), herpesviruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), exploit Rho-GTPase-mediated cytoskeletal reorganization to enhance infectivity. For example, Rho-GTPases promote actin remodeling and membrane fusion, which are essential for viral entry and intracellular transport. Furthermore, Rho-GTPases modulate immune responses, often suppressing antiviral defenses to favor viral replication. Despite these insights, the molecular mechanisms underlying Rho-GTPase regulation during viral infections remain incompletely understood. Future research should focus on delineating the precise roles of Rho-GTPases in distinct viral life cycles, uncovering novel regulatory mechanisms, and developing targeted antiviral therapies that selectively inhibit Rho-GTPase signaling without compromising host cell functions. Such advancements could pave the way for broad-spectrum antiviral strategies, particularly against viruses that heavily rely on cytoskeletal manipulation for infection.</jats:p>", "alternative-id": [ "722" ], "article-number": "55", "assertion": [ { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Received", "name": "received", "order": 1, "value": "31 October 2024" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Accepted", "name": "accepted", "order": 2, "value": "27 March 2025" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "First Online", "name": "first_online", "order": 3, "value": "2 May 2025" }, { "group": { "label": "Declarations", "name": "EthicsHeading" }, "name": "Ethics", "order": 1 }, { "group": { "label": "Competing interests", "name": "EthicsHeading" }, "name": "Ethics", "order": 2, "value": "The authors declare no competing interest." } ], "author": [ { "ORCID": "https://orcid.org/0000-0002-7022-5403", "affiliation": [], "authenticated-orcid": false, "family": "Zhang", "given": "Beibei", "sequence": "first" }, { "affiliation": [], "family": "Li", "given": "Shuli", "sequence": "additional" }, { "affiliation": [], "family": "Ding", "given": "Juntao", "sequence": "additional" }, { "affiliation": [], "family": "Guo", "given": "Jingxia", "sequence": "additional" }, { "affiliation": [], "family": "Ma", "given": "Zhenghai", "sequence": "additional" }, { "affiliation": [], "family": "Duan", "given": "Hong", "sequence": "additional" } ], "container-title": "Cellular &amp; Molecular Biology Letters", "container-title-short": "Cell Mol Biol Lett", "content-domain": { "crossmark-restriction": false, "domain": [ "link.springer.com" ] }, "created": { "date-parts": [ [ 2025, 5, 2 ] ], "date-time": "2025-05-02T15:24:43Z", "timestamp": 1746199483000 }, "deposited": { "date-parts": [ [ 2025, 5, 2 ] ], "date-time": "2025-05-02T16:03:48Z", "timestamp": 1746201828000 }, "funder": [ { "name": "Tianchi Talent Youth of Doctoral Talent Program in Xinjiang Uygur Autonomous Region" }, { "award": [ "2022D01C697" ], "name": "Youth Fund of the Natural Science Foundation of Xinjiang Uygur Autonomous Region" } ], "indexed": { "date-parts": [ [ 2025, 5, 3 ] ], "date-time": "2025-05-03T04:09:08Z", "timestamp": 1746245348812, "version": "3.40.4" }, "is-referenced-by-count": 0, "issue": "1", "issued": { "date-parts": [ [ 2025, 5, 2 ] ] }, "journal-issue": { "issue": "1", "published-online": { "date-parts": [ [ 2025, 12 ] ] } }, "language": "en", "license": [ { "URL": "https://creativecommons.org/licenses/by/4.0", "content-version": "tdm", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 5, 2 ] ], "date-time": "2025-05-02T00:00:00Z", "timestamp": 1746144000000 } }, { "URL": "https://creativecommons.org/licenses/by/4.0", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 5, 2 ] ], "date-time": "2025-05-02T00:00:00Z", "timestamp": 1746144000000 } } ], "link": [ { "URL": "https://link.springer.com/content/pdf/10.1186/s11658-025-00722-w.pdf", "content-type": "application/pdf", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://link.springer.com/article/10.1186/s11658-025-00722-w/fulltext.html", "content-type": "text/html", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://link.springer.com/content/pdf/10.1186/s11658-025-00722-w.pdf", "content-type": "application/pdf", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "297", "original-title": [], "prefix": "10.1186", "published": { "date-parts": [ [ 2025, 5, 2 ] ] }, "published-online": { "date-parts": [ [ 2025, 5, 2 ] ] }, "publisher": "Springer Science and Business Media LLC", "reference": [ { "DOI": "10.3390/cells10071831", "author": "N Mosaddeghzadeh", "doi-asserted-by": "publisher", "first-page": "1831", "issue": "7", "journal-title": "Cells", "key": "722_CR1", "unstructured": "Mosaddeghzadeh N, Ahmadian MR. The RHO family GTPases: mechanisms of regulation and signaling. Cells. 2021;10(7):1831.", "volume": "10", "year": "2021" }, { "DOI": "10.4161/sgtp.28318", "author": "C Van den Broeke", "doi-asserted-by": "publisher", "journal-title": "Small GTPases", "key": "722_CR2", "unstructured": "Van den Broeke C, Jacob T, Favoreel HW. Rho’ing in and out of cells: viral interactions with Rho GTPase signaling. Small GTPases. 2014;5: e28318.", "volume": "5", "year": "2014" }, { "DOI": "10.1515/hsz-2013-0181", "author": "E Amin", "doi-asserted-by": "publisher", "first-page": "1399", "issue": "11", "journal-title": "Biol Chem", "key": "722_CR3", "unstructured": "Amin E, Dubey BN, Zhang SC, Gremer L, Dvorsky R, Moll JM, et al. Rho-kinase: regulation, (dys)function, and inhibition. Biol Chem. 2013;394(11):1399–410.", "volume": "394", "year": "2013" }, { "DOI": "10.1016/j.virusres.2023.199105", "author": "R Kumar", "doi-asserted-by": "publisher", "journal-title": "Virus Res", "key": "722_CR4", "unstructured": "Kumar R, Barua S, Tripathi BN, Kumar N. Role of ROCK signaling in virus replication. Virus Res. 2023;329: 199105.", "volume": "329", "year": "2023" }, { "DOI": "10.1038/s42003-021-02754-2", "author": "M Malhi", "doi-asserted-by": "publisher", "first-page": "1239", "issue": "1", "journal-title": "Commun Biol", "key": "722_CR5", "unstructured": "Malhi M, Norris MJ, Duan W, Moraes TJ, Maynes JT. Statin-mediated disruption of Rho GTPase prenylation and activity inhibits respiratory syncytial virus infection. Commun Biol. 2021;4(1):1239.", "volume": "4", "year": "2021" }, { "DOI": "10.1083/jcb.201103008", "author": "AM Rojas", "doi-asserted-by": "publisher", "first-page": "189", "issue": "2", "journal-title": "J Cell Biol", "key": "722_CR6", "unstructured": "Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol. 2012;196(2):189–201.", "volume": "196", "year": "2012" }, { "DOI": "10.1159/000438612", "author": "M Tseliou", "doi-asserted-by": "publisher", "first-page": "94", "issue": "1", "journal-title": "Cell Physiol Biochem", "key": "722_CR7", "unstructured": "Tseliou M, Al-Qahtani A, Alarifi S, Alkahtani SH, Stournaras C, Sourvinos G. The role of RhoA, RhoB and RhoC GTPases in cell morphology, proliferation and migration in human cytomegalovirus (HCMV) infected glioblastoma cells. Cell Physiol Biochem. 2016;38(1):94–109.", "volume": "38", "year": "2016" }, { "DOI": "10.1016/j.molimm.2023.10.004", "author": "L Xu", "doi-asserted-by": "publisher", "first-page": "196", "journal-title": "Mol Immunol", "key": "722_CR8", "unstructured": "Xu L, Ren H, Xie D, Zhang F, Hu X, Fang S, et al. Rac2 mediate foam cell formation and associated immune responses in THP-1 to promote the process of atherosclerotic plaques. Mol Immunol. 2023;163:196–206.", "volume": "163", "year": "2023" }, { "DOI": "10.1038/s41598-019-43975-0", "author": "T Kunschmann", "doi-asserted-by": "publisher", "first-page": "7675", "issue": "1", "journal-title": "Sci Rep", "key": "722_CR9", "unstructured": "Kunschmann T, Puder S, Fischer T, Steffen A, Rottner K, Mierke CT. The small GTPase Rac1 increases cell surface stiffness and enhances 3D migration into extracellular matrices. Sci Rep. 2019;9(1):7675.", "volume": "9", "year": "2019" }, { "DOI": "10.1074/jbc.M605560200", "author": "CV Finkielstein", "doi-asserted-by": "publisher", "first-page": "27317", "issue": "37", "journal-title": "J Biol Chem", "key": "722_CR10", "unstructured": "Finkielstein CV, Overduin M, Capelluto DG. Cell migration and signaling specificity is determined by the phosphatidylserine recognition motif of Rac1. J Biol Chem. 2006;281(37):27317–26.", "volume": "281", "year": "2006" }, { "DOI": "10.1002/1873-3468.13087", "author": "S Narumiya", "doi-asserted-by": "publisher", "first-page": "1763", "issue": "11", "journal-title": "FEBS Lett", "key": "722_CR11", "unstructured": "Narumiya S, Thumkeo D. Rho signaling research: history, current status and future directions. FEBS Lett. 2018;592(11):1763–76.", "volume": "592", "year": "2018" }, { "DOI": "10.3389/fmicb.2021.775083", "author": "M Fan", "doi-asserted-by": "publisher", "journal-title": "Front Microbiol", "key": "722_CR12", "unstructured": "Fan M, Luo Y, Zhang B, Wang J, Chen T, Liu B, et al. Cell division control protein 42 interacts with hepatitis E virus capsid protein and participates in hepatitis E virus infection. Front Microbiol. 2021;12: 775083.", "volume": "12", "year": "2021" }, { "DOI": "10.1128/spectrum.02265-21", "author": "B Zhang", "doi-asserted-by": "publisher", "issue": "1", "journal-title": "Microbiol Spectr", "key": "722_CR13", "unstructured": "Zhang B, Fan M, Fan J, Luo Y, Wang J, Wang Y, et al. Avian hepatitis E virus ORF2 protein interacts with rap1b to induce cytoskeleton rearrangement that facilitates virus internalization. Microbiol Spectr. 2022;10(1): e0226521.", "volume": "10", "year": "2022" }, { "DOI": "10.1007/s10528-022-10223-6", "author": "G Li", "doi-asserted-by": "publisher", "first-page": "2383", "issue": "6", "journal-title": "Biochem Genet", "key": "722_CR14", "unstructured": "Li G, Wang Y, Guo XB, Zhao B. CDC42 regulates cell proliferation and apoptosis in bladder cancer via the IQGAP3-mediated Ras/ERK pathway. Biochem Genet. 2022;60(6):2383–98.", "volume": "60", "year": "2022" }, { "DOI": "10.1038/s41419-020-03094-5", "author": "P Xiang", "doi-asserted-by": "publisher", "first-page": "907", "issue": "10", "journal-title": "Cell Death Dis", "key": "722_CR15", "unstructured": "Xiang P, Li F, Ma Z, Yue J, Lu C, You Y, et al. HCF-1 promotes cell cycle progression by regulating the expression of CDC42. Cell Death Dis. 2020;11(10):907.", "volume": "11", "year": "2020" }, { "DOI": "10.1080/21541248.2020.1829914", "author": "S Basbous", "doi-asserted-by": "publisher", "first-page": "336", "issue": "5–6", "journal-title": "Small GTPases", "key": "722_CR16", "unstructured": "Basbous S, Azzarelli R, Pacary E, Moreau V. Pathophysiological functions of Rnd proteins. Small GTPases. 2021;12(5–6):336–57.", "volume": "12", "year": "2021" }, { "DOI": "10.1016/S0960-9822(03)00418-4", "author": "K Wennerberg", "doi-asserted-by": "publisher", "first-page": "1106", "issue": "13", "journal-title": "Curr Biol", "key": "722_CR17", "unstructured": "Wennerberg K, Forget MA, Ellerbroek SM, Arthur WT, Burridge K, Settleman J, et al. Rnd proteins function as RhoA antagonists by activating p190 RhoGAP. Curr Biol. 2003;13(13):1106–15.", "volume": "13", "year": "2003" }, { "author": "TH Nguyen", "first-page": "1319", "issue": "4", "journal-title": "GBethesda.", "key": "722_CR18", "unstructured": "Nguyen TH, Ralbovska A, Kugler JM. RhoBTB proteins regulate the hippo pathway by antagonizing ubiquitination of LKB1. GBethesda. 2020;10(4):1319–25.", "volume": "10", "year": "2020" }, { "DOI": "10.1042/BCJ20190203", "author": "RB Haga", "doi-asserted-by": "publisher", "first-page": "2499", "issue": "17", "journal-title": "Biochem J", "key": "722_CR19", "unstructured": "Haga RB, Garg R, Collu F, Borda D’Agua B, Menendez ST, Colomba A, et al. RhoBTB1 interacts with ROCKs and inhibits invasion. Biochem J. 2019;476(17):2499–514.", "volume": "476", "year": "2019" }, { "DOI": "10.3390/v3040278", "author": "C Van den Broeke", "doi-asserted-by": "publisher", "first-page": "278", "issue": "4", "journal-title": "Viruses", "key": "722_CR20", "unstructured": "Van den Broeke C, Favoreel HW. Actin’ up: herpesvirus interactions with Rho GTPase signaling. Viruses. 2011;3(4):278–92.", "volume": "3", "year": "2011" }, { "DOI": "10.1016/j.tim.2020.07.002", "author": "MH Wissing", "doi-asserted-by": "publisher", "first-page": "309", "issue": "4", "journal-title": "Trends Microbiol", "key": "722_CR21", "unstructured": "Wissing MH, Bruggemann Y, Steinmann E, Todt D. Virus-host cell interplay during hepatitis E virus infection. Trends Microbiol. 2021;29(4):309–19.", "volume": "29", "year": "2021" }, { "DOI": "10.1016/j.meegid.2019.01.018", "author": "A Agrelli", "doi-asserted-by": "publisher", "first-page": "22", "journal-title": "Infect Genet Evol", "key": "722_CR22", "unstructured": "Agrelli A, de Moura RR, Crovella S, Brandao LAC. ZIKA virus entry mechanisms in human cells. Infect Genet Evol. 2019;69:22–9.", "volume": "69", "year": "2019" }, { "DOI": "10.3389/fimmu.2023.1154217", "author": "Y Peng", "doi-asserted-by": "publisher", "first-page": "1154217", "journal-title": "Front Immunol", "key": "722_CR23", "unstructured": "Peng Y, Yang Y, Li Y, Shi T, Luan Y, Yin C. Exosome and virus infection. Front Immunol. 2023;14:1154217.", "volume": "14", "year": "2023" }, { "DOI": "10.1038/s41564-022-01164-2", "author": "D Chmielewski", "doi-asserted-by": "publisher", "first-page": "1270", "issue": "8", "journal-title": "Nat Microbiol", "key": "722_CR24", "unstructured": "Chmielewski D, Schmid MF, Simmons G, Jin J, Chiu W. Chikungunya virus assembly and budding visualized in situ using cryogenic electron tomography. Nat Microbiol. 2022;7(8):1270–9.", "volume": "7", "year": "2022" }, { "DOI": "10.3390/v9110316", "author": "X Zhou", "doi-asserted-by": "publisher", "first-page": "316", "issue": "11", "journal-title": "Viruses", "key": "722_CR25", "unstructured": "Zhou X, Jiang W, Liu Z, Liu S, Liang X. Virus infection and death receptor-mediated apoptosis. Viruses. 2017;9(11):316.", "volume": "9", "year": "2017" }, { "DOI": "10.1128/mbio.00721-22", "author": "T Kuroki", "doi-asserted-by": "publisher", "first-page": "e0072122", "issue": "3", "journal-title": "MBio", "key": "722_CR26", "unstructured": "Kuroki T, Hatta T, Natsume T, Sakai N, Yagi A, Kato K, et al. ARHGAP1 transported with influenza viral genome ensures integrity of viral particle surface through efficient budozone formation. MBio. 2022;13(3):e0072122.", "volume": "13", "year": "2022" }, { "DOI": "10.1093/jxb/erab408", "author": "H Han", "doi-asserted-by": "publisher", "first-page": "366", "issue": "1", "journal-title": "J Exp Bot", "key": "722_CR27", "unstructured": "Han H, Zou J, Zhou J, Zeng M, Zheng D, Yuan X, et al. The small GTPase NtRHO1 negatively regulates tobacco defense response to tobacco mosaic virus by interacting with NtWRKY50. J Exp Bot. 2022;73(1):366–81.", "volume": "73", "year": "2022" }, { "DOI": "10.1016/j.virusres.2018.08.013", "author": "AM Cuartas-Lopez", "doi-asserted-by": "publisher", "first-page": "153", "journal-title": "Virus Res", "key": "722_CR28", "unstructured": "Cuartas-Lopez AM, Hernandez-Cuellar CE, Gallego-Gomez JC. Disentangling the role of PI3K/Akt, Rho GTPase and the actin cytoskeleton on dengue virus infection. Virus Res. 2018;256:153–65.", "volume": "256", "year": "2018" }, { "DOI": "10.1128/JVI.01577-16", "author": "JAS Lamote", "doi-asserted-by": "publisher", "first-page": "10945", "issue": "23", "journal-title": "J Virol", "key": "722_CR29", "unstructured": "Lamote JAS, Glorieux S, Nauwynck HJ, Favoreel HW. The US3 protein of pseudorabies virus drives viral passage across the basement membrane in porcine respiratory mucosa explants. J Virol. 2016;90(23):10945–50.", "volume": "90", "year": "2016" }, { "DOI": "10.1128/jvi.00606-24", "author": "X Liu", "doi-asserted-by": "publisher", "journal-title": "J Virol", "key": "722_CR30", "unstructured": "Liu X, Xu J, Zhang M, Wang H, Guo X, Zhao M, et al. RABV induces biphasic actin cytoskeletal rearrangement through Rac1 activity modulation. J Virol. 2024;2024: e0060624.", "volume": "2024", "year": "2024" }, { "DOI": "10.1089/ars.2012.4584", "author": "Q Ma", "doi-asserted-by": "publisher", "first-page": "80", "issue": "1", "journal-title": "Antioxid Redox Signal", "key": "722_CR31", "unstructured": "Ma Q, Cavallin LE, Leung HJ, Chiozzini C, Goldschmidt-Clermont PJ, Mesri EA. A role for virally induced reactive oxygen species in Kaposi’s sarcoma herpesvirus tumorigenesis. Antioxid Redox Signal. 2013;18(1):80–90.", "volume": "18", "year": "2013" }, { "DOI": "10.3389/fvets.2020.586826", "author": "M Su", "doi-asserted-by": "publisher", "journal-title": "Front Vet Sci", "key": "722_CR32", "unstructured": "Su M, Chen Y, Qi S, Shi D, Feng L, Sun D. A mini-review on cell cycle regulation of coronavirus infection. Front Vet Sci. 2020;7: 586826.", "volume": "7", "year": "2020" }, { "DOI": "10.1128/JVI.00086-10", "author": "L Yang", "doi-asserted-by": "publisher", "first-page": "3001", "issue": "6", "journal-title": "J Virol", "key": "722_CR33", "unstructured": "Yang L, Kotomura N, Ho YK, Zhi H, Bixler S, Schell MJ, et al. Complex cell cycle abnormalities caused by human T-lymphotropic virus type 1 Tax. J Virol. 2011;85(6):3001–9.", "volume": "85", "year": "2011" }, { "DOI": "10.1126/sciadv.aav7999", "author": "S Yang", "doi-asserted-by": "publisher", "issue": "5", "journal-title": "Sci Adv", "key": "722_CR34", "unstructured": "Yang S, Harding AT, Sweeney C, Miao D, Swan G, Zhou C, et al. Control of antiviral innate immune response by protein geranylgeranylation. Sci Adv. 2019;5(5): eaav7999.", "volume": "5", "year": "2019" }, { "DOI": "10.3390/genes12060819", "author": "O Soriano", "doi-asserted-by": "publisher", "first-page": "819", "issue": "6", "journal-title": "Genes (Basel).", "key": "722_CR35", "unstructured": "Soriano O, Alcon-Perez M, Vicente-Manzanares M, Castellano E. The crossroads between RAS and RHO signaling pathways in cellular transformation, motility and contraction. Genes (Basel). 2021;12(6):819.", "volume": "12", "year": "2021" }, { "DOI": "10.1016/j.cell.2007.05.018", "author": "JL Bos", "doi-asserted-by": "publisher", "first-page": "865", "issue": "5", "journal-title": "Cell", "key": "722_CR36", "unstructured": "Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129(5):865–77.", "volume": "129", "year": "2007" }, { "DOI": "10.1038/s41392-023-01441-4", "author": "G Yin", "doi-asserted-by": "publisher", "first-page": "212", "issue": "1", "journal-title": "Signal Transduct Target Ther", "key": "722_CR37", "unstructured": "Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, et al. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther. 2023;8(1):212.", "volume": "8", "year": "2023" }, { "DOI": "10.1152/physrev.00045.2020", "author": "E Crosas-Molist", "doi-asserted-by": "publisher", "first-page": "455", "issue": "1", "journal-title": "Physiol Rev", "key": "722_CR38", "unstructured": "Crosas-Molist E, Samain R, Kohlhammer L, Orgaz JL, George SL, Maiques O, et al. Rho GTPase signaling in cancer progression and dissemination. Physiol Rev. 2022;102(1):455–510.", "volume": "102", "year": "2022" }, { "DOI": "10.1530/VB-21-0008", "author": "WS Rodenburg", "doi-asserted-by": "publisher", "first-page": "R77", "issue": "1", "journal-title": "Vasc Biol", "key": "722_CR39", "unstructured": "Rodenburg WS, van Buul JD. Rho GTPase signalling networks in cancer cell transendothelial migration. Vasc Biol. 2021;3(1):R77–95.", "volume": "3", "year": "2021" }, { "DOI": "10.7150/ijbs.44943", "author": "X Li", "doi-asserted-by": "publisher", "first-page": "2014", "issue": "12", "journal-title": "Int J Biol Sci", "key": "722_CR40", "unstructured": "Li X, Wang J. Mechanical tumor microenvironment and transduction: cytoskeleton mediates cancer cell invasion and metastasis. Int J Biol Sci. 2020;16(12):2014–28.", "volume": "16", "year": "2020" }, { "DOI": "10.3390/cancers12123709", "author": "TM Grzywa", "doi-asserted-by": "publisher", "first-page": "3709", "issue": "12", "journal-title": "Cancers (Basel).", "key": "722_CR41", "unstructured": "Grzywa TM, Klicka K, Wlodarski PK. Regulators at every step-how microRNAs drive tumor cell invasiveness and metastasis. Cancers (Basel). 2020;12(12):3709.", "volume": "12", "year": "2020" }, { "DOI": "10.3390/biom11050629", "author": "M Pancione", "doi-asserted-by": "publisher", "first-page": "629", "issue": "5", "journal-title": "Biomolecules", "key": "722_CR42", "unstructured": "Pancione M, Cerulo L, Remo A, Giordano G, Gutierrez-Uzquiza A, Bragado P, et al. Centrosome dynamics and its role in inflammatory response and metastatic process. Biomolecules. 2021;11(5):629.", "volume": "11", "year": "2021" }, { "DOI": "10.1038/s41392-020-0134-x", "author": "J Fares", "doi-asserted-by": "publisher", "first-page": "28", "issue": "1", "journal-title": "Signal Transduct Target Ther", "key": "722_CR43", "unstructured": "Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5(1):28.", "volume": "5", "year": "2020" }, { "DOI": "10.1016/j.cytogfr.2022.05.001", "author": "N Ebrahimi", "doi-asserted-by": "publisher", "first-page": "11", "journal-title": "Cytokine Growth Factor Rev", "key": "722_CR44", "unstructured": "Ebrahimi N, Kharazmi K, Ghanaatian M, Miraghel SA, Amiri Y, Seyedebrahimi SS, et al. Role of the Wnt and GTPase pathways in breast cancer tumorigenesis and treatment. Cytokine Growth Factor Rev. 2022;67:11–24.", "volume": "67", "year": "2022" }, { "DOI": "10.1111/jcmm.14819", "author": "MP Ocaranza", "doi-asserted-by": "publisher", "first-page": "1413", "issue": "2", "journal-title": "J Cell Mol Med", "key": "722_CR45", "unstructured": "Ocaranza MP, Moya J, Jalil JE, Lavandero S, Kalergis AM, Molina C, et al. Rho-kinase pathway activation and apoptosis in circulating leucocytes in patients with heart failure with reduced ejection fraction. J Cell Mol Med. 2020;24(2):1413–27.", "volume": "24", "year": "2020" }, { "DOI": "10.1038/s41419-023-05726-y", "author": "L Fu", "doi-asserted-by": "publisher", "first-page": "280", "issue": "4", "journal-title": "Cell Death Dis", "key": "722_CR46", "unstructured": "Fu L, Wang X, Yang Y, Chen M, Kuerban A, Liu H, et al. Septin11 promotes hepatocellular carcinoma cell motility by activating RhoA to regulate cytoskeleton and cell adhesion. Cell Death Dis. 2023;14(4):280.", "volume": "14", "year": "2023" }, { "DOI": "10.3390/biom13030450", "author": "S Rajan", "doi-asserted-by": "publisher", "first-page": "450", "issue": "3", "journal-title": "Biomolecules", "key": "722_CR47", "unstructured": "Rajan S, Kudryashov DS, Reisler E. Actin bundles dynamics and architecture. Biomolecules. 2023;13(3):450.", "volume": "13", "year": "2023" }, { "DOI": "10.1371/journal.pntd.0000809", "author": "JL Wang", "doi-asserted-by": "publisher", "first-page": "e809", "issue": "8", "journal-title": "PLoS Negl Trop Dis", "key": "722_CR48", "unstructured": "Wang JL, Zhang JL, Chen W, Xu XF, Gao N, Fan DY, et al. Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection. PLoS Negl Trop Dis. 2010;4(8):e809.", "volume": "4", "year": "2010" }, { "DOI": "10.3390/v10040166", "doi-asserted-by": "crossref", "key": "722_CR49", "unstructured": "Wang IH, Burckhardt CJ, Yakimovich A, Greber UF. Imaging, tracking and computational analyses of virus entry and egress with the cytoskeleton. Viruses. 2018;10(4)." }, { "DOI": "10.3390/genes14020272", "author": "G Guan", "doi-asserted-by": "publisher", "first-page": "272", "issue": "2", "journal-title": "Genes (Basel).", "key": "722_CR50", "unstructured": "Guan G, Cannon RD, Coates DE, Mei L. Effect of the Rho-Kinase/ROCK signaling pathway on cytoskeleton components. Genes (Basel). 2023;14(2):272.", "volume": "14", "year": "2023" }, { "DOI": "10.3390/cells11091559", "author": "KN Becker", "doi-asserted-by": "publisher", "first-page": "1559", "issue": "9", "journal-title": "Cells", "key": "722_CR51", "unstructured": "Becker KN, Pettee KM, Sugrue A, Reinard KA, Schroeder JL, Eisenmann KM. The cytoskeleton effectors rho-kinase (ROCK) and mammalian diaphanous-related (mDia) formin have dynamic roles in tumor microtube formation in invasive glioblastoma cells. Cells. 2022;11(9):1559.", "volume": "11", "year": "2022" }, { "DOI": "10.1091/mbc.E21-03-0156", "author": "S Sala", "doi-asserted-by": "publisher", "first-page": "1758", "issue": "18", "journal-title": "Mol Biol Cell", "key": "722_CR52", "unstructured": "Sala S, Oakes PW. Stress fiber strain recognition by the LIM protein testin is cryptic and mediated by RhoA. Mol Biol Cell. 2021;32(18):1758–71.", "volume": "32", "year": "2021" }, { "DOI": "10.1038/srep21901", "author": "K Martin", "doi-asserted-by": "publisher", "first-page": "21901", "journal-title": "Sci Rep", "key": "722_CR53", "unstructured": "Martin K, Reimann A, Fritz RD, Ryu H, Jeon NL, Pertz O. Spatio-temporal co-ordination of RhoA, Rac1 and Cdc42 activation during prototypical edge protrusion and retraction dynamics. Sci Rep. 2016;6:21901.", "volume": "6", "year": "2016" }, { "DOI": "10.1242/jcs.248385", "doi-asserted-by": "crossref", "key": "722_CR54", "unstructured": "DeWane G, Salvi AM, DeMali KA. Fueling the cytoskeleton—links between cell metabolism and actin remodeling. J Cell Sci. 2021;134(3)." }, { "DOI": "10.1016/j.cell.2022.08.011", "author": "D Acharya", "doi-asserted-by": "publisher", "first-page": "3588", "issue": "19", "journal-title": "Cell", "key": "722_CR55", "unstructured": "Acharya D, Reis R, Volcic M, Liu G, Wang MK, Chia BS, et al. Actin cytoskeleton remodeling primes RIG-I-like receptor activation. Cell. 2022;185(19):3588-602 e21.", "volume": "185", "year": "2022" }, { "DOI": "10.1128/JVI.01891-16", "doi-asserted-by": "crossref", "key": "722_CR56", "unstructured": "Ye C, Han X, Yu Z, Zhang E, Wang L, Liu H. Infectious bursal disease virus activates c-Src to promote alpha4beta1 integrin-dependent viral entry by modulating the downstream Akt-RhoA GTPase-actin rearrangement cascade. J Virol. 2017;91(3)." }, { "DOI": "10.3390/v8110305", "doi-asserted-by": "crossref", "key": "722_CR57", "unstructured": "Kumar B, Chandran B. KSHV entry and trafficking in target cells-hijacking of cell signal pathways, actin and membrane dynamics. Viruses. 2016;8(11)." }, { "DOI": "10.3390/ijms23010578", "doi-asserted-by": "crossref", "key": "722_CR58", "unstructured": "Hornikova L, Brustikova K, Huerfano S, Forstova J. Nuclear cytoskeleton in virus infection. Int J Mol Sci. 2022;23(1)." }, { "DOI": "10.1016/j.virusres.2019.01.003", "author": "O Trejo-Cerro", "doi-asserted-by": "publisher", "first-page": "27", "journal-title": "Virus Res", "key": "722_CR59", "unstructured": "Trejo-Cerro O, Aguilar-Hernandez N, Silva-Ayala D, Lopez S, Arias CF. The actin cytoskeleton is important for rotavirus internalization and RNA genome replication. Virus Res. 2019;263:27–33.", "volume": "263", "year": "2019" }, { "DOI": "10.1128/JVI.00051-21", "doi-asserted-by": "crossref", "key": "722_CR60", "unstructured": "Sharif M, Baek YB, Naveed A, Stalin N, Kang MI, Park SI, et al. Porcine sapovirus-induced tight junction dissociation via activation of RhoA/ROCK/MLC signaling pathway. J Virol. 2021;95(11)." }, { "DOI": "10.1128/JVI.00469-15", "author": "A Thomas", "doi-asserted-by": "publisher", "first-page": "8162", "issue": "16", "journal-title": "J Virol", "key": "722_CR61", "unstructured": "Thomas A, Mariani-Floderer C, Lopez-Huertas MR, Gros N, Hamard-Peron E, Favard C, et al. Involvement of the Rac1-IRSp53-Wave2-Arp2/3 signaling pathway in HIV-1 gag particle release in CD4 T cells. J Virol. 2015;89(16):8162–81.", "volume": "89", "year": "2015" }, { "DOI": "10.3389/fcell.2020.00201", "author": "MDM Maldonado", "doi-asserted-by": "publisher", "first-page": "201", "journal-title": "Front Cell Dev Biol", "key": "722_CR62", "unstructured": "Maldonado MDM, Medina JI, Velazquez L, Dharmawardhane S. Targeting Rac and Cdc42 GEFs in metastatic cancer. Front Cell Dev Biol. 2020;8:201.", "volume": "8", "year": "2020" }, { "DOI": "10.1371/journal.pgen.1010127", "author": "HK Brar", "doi-asserted-by": "publisher", "issue": "3", "journal-title": "PLoS Genet", "key": "722_CR63", "unstructured": "Brar HK, Dey S, Bhardwaj S, Pande D, Singh P, Dey S, et al. Dendrite regeneration in C. elegans is controlled by the RAC GTPase CED-10 and the RhoGEF TIAM-1. PLoS Genet. 2022;18(3): e1010127.", "volume": "18", "year": "2022" }, { "DOI": "10.3390/ijms21041341", "author": "J Hong", "doi-asserted-by": "publisher", "first-page": "1341", "issue": "4", "journal-title": "Int J Mol Sci", "key": "722_CR64", "unstructured": "Hong J, Kim Y, Yanpallewar S, Lin PC. The Rho/Rac guanine nucleotide exchange factor Vav1 regulates Hif-1alpha and Glut-1 expression and glucose uptake in the brain. Int J Mol Sci. 2020;21(4):1341.", "volume": "21", "year": "2020" }, { "DOI": "10.1016/j.jbc.2022.102209", "author": "SJ Bandekar", "doi-asserted-by": "publisher", "issue": "8", "journal-title": "J Biol Chem", "key": "722_CR65", "unstructured": "Bandekar SJ, Chen CL, Ravala SK, Cash JN, Avramova LV, Zhalnina MV, et al. Structural/functional studies of Trio provide insights into its configuration and show that conserved linker elements enhance its activity for Rac1. J Biol Chem. 2022;298(8): 102209.", "volume": "298", "year": "2022" }, { "DOI": "10.1007/s11010-019-03552-5", "author": "S Nakano", "doi-asserted-by": "publisher", "first-page": "83", "issue": "1–2", "journal-title": "Mol Cell Biochem", "key": "722_CR66", "unstructured": "Nakano S, Nishikawa M, Asaoka R, Ishikawa N, Ohwaki C, Sato K, et al. DBS is activated by EPHB2/SRC signaling-mediated tyrosine phosphorylation in HEK293 cells. Mol Cell Biochem. 2019;459(1–2):83–93.", "volume": "459", "year": "2019" }, { "DOI": "10.1186/s12915-021-01054-9", "author": "JD Howden", "doi-asserted-by": "publisher", "first-page": "130", "issue": "1", "journal-title": "BMC Biol", "key": "722_CR67", "unstructured": "Howden JD, Michael M, Hight-Warburton W, Parsons M. alpha2beta1 integrins spatially restrict Cdc42 activity to stabilise adherens junctions. BMC Biol. 2021;19(1):130.", "volume": "19", "year": "2021" }, { "DOI": "10.3390/ijms222212493", "author": "N Mosaddeghzadeh", "doi-asserted-by": "publisher", "first-page": "12493", "issue": "22", "journal-title": "Int J Mol Sci", "key": "722_CR68", "unstructured": "Mosaddeghzadeh N, Kazemein Jasemi NS, Majolee J, Zhang SC, Hordijk PL, Dvorsky R, et al. Electrostatic forces mediate the specificity of RHO GTPase-GDI interactions. Int J Mol Sci. 2021;22(22):12493.", "volume": "22", "year": "2021" }, { "DOI": "10.1152/physrev.00003.2012", "author": "J Cherfils", "doi-asserted-by": "publisher", "first-page": "269", "issue": "1", "journal-title": "Physiol Rev", "key": "722_CR69", "unstructured": "Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 2013;93(1):269–309.", "volume": "93", "year": "2013" }, { "DOI": "10.1038/sj.onc.1204188", "author": "IP Whitehead", "doi-asserted-by": "publisher", "first-page": "1547", "issue": "13", "journal-title": "Oncogene", "key": "722_CR70", "unstructured": "Whitehead IP, Zohn IE, Der CJ. Rho GTPase-dependent transformation by G protein-coupled receptors. Oncogene. 2001;20(13):1547–55.", "volume": "20", "year": "2001" }, { "DOI": "10.1016/j.tice.2020.101364", "author": "G Salloum", "doi-asserted-by": "publisher", "journal-title": "Tissue Cell", "key": "722_CR71", "unstructured": "Salloum G, Jaafar L, El-Sibai M. Rho A and Rac1: antagonists moving forward. Tissue Cell. 2020;65: 101364.", "volume": "65", "year": "2020" }, { "DOI": "10.1016/j.envres.2020.109236", "author": "L Wang", "doi-asserted-by": "publisher", "journal-title": "Environ Res", "key": "722_CR72", "unstructured": "Wang L, Chen G, Xiao G, Han L, Wang Q, Hu T. Cylindrospermopsin induces abnormal vascular development through impairing cytoskeleton and promoting vascular endothelial cell apoptosis by the Rho/ROCK signaling pathway. Environ Res. 2020;183: 109236.", "volume": "183", "year": "2020" }, { "DOI": "10.1016/j.bbrc.2019.06.132", "author": "Z Wang", "doi-asserted-by": "publisher", "first-page": "976", "issue": "3", "journal-title": "Biochem Biophys Res Commun", "key": "722_CR73", "unstructured": "Wang Z, Sun L, Liang S, Liu ZC, Zhao ZY, Yang J, et al. GPER stabilizes F-actin cytoskeleton and activates TAZ via PLCbeta-PKC and Rho/ROCK-LIMK-Cofilin pathway. Biochem Biophys Res Commun. 2019;516(3):976–82.", "volume": "516", "year": "2019" }, { "DOI": "10.1128/JVI.01736-18", "doi-asserted-by": "crossref", "key": "722_CR74", "unstructured": "Lv X, Li Z, Guan J, Hu S, Zhang J, Lan Y, et al. Porcine hemagglutinating encephalomyelitis virus activation of the integrin alpha5beta1-FAK-Cofilin pathway causes cytoskeletal rearrangement to promote its invasion of N2a cells. J Virol. 2019;93(5)." }, { "DOI": "10.1128/JVI.00453-19", "doi-asserted-by": "crossref", "key": "722_CR75", "unstructured": "Eliyahu E, Tirosh O, Dobesova M, Nachshon A, Schwartz M, Stern-Ginossar N. Rho-associated coiled-coil kinase 1 translocates to the nucleus and inhibits human cytomegalovirus propagation. J Virol. 2019;93(19)." }, { "DOI": "10.1111/j.1600-0854.2009.00996.x", "author": "A Tomas", "doi-asserted-by": "publisher", "first-page": "123", "issue": "1", "journal-title": "Traffic", "key": "722_CR76", "unstructured": "Tomas A, Yermen B, Regazzi R, Pessin JE, Halban PA. Regulation of insulin secretion by phosphatidylinositol-4,5-bisphosphate. Traffic. 2010;11(1):123–37.", "volume": "11", "year": "2010" }, { "DOI": "10.1021/acsnano.3c05508", "author": "M Sharma", "doi-asserted-by": "publisher", "first-page": "17436", "issue": "17", "journal-title": "ACS Nano", "key": "722_CR77", "unstructured": "Sharma M, Marin M, Wu H, Prikryl D, Melikyan GB. Human immunodeficiency virus 1 preferentially fuses with pH-neutral endocytic vesicles in cell lines and human primary CD4+ T-cells. ACS Nano. 2023;17(17):17436–50.", "volume": "17", "year": "2023" }, { "DOI": "10.1016/j.chom.2007.04.007", "author": "Y Arakawa", "doi-asserted-by": "publisher", "first-page": "213", "issue": "3", "journal-title": "Cell Host Microbe", "key": "722_CR78", "unstructured": "Arakawa Y, Cordeiro JV, Way M. F11L-mediated inhibition of RhoA-mDia signaling stimulates microtubule dynamics during vaccinia virus infection. Cell Host Microbe. 2007;1(3):213–26.", "volume": "1", "year": "2007" }, { "DOI": "10.1038/sj.emboj.7601092", "author": "SR Frank", "doi-asserted-by": "publisher", "first-page": "1848", "issue": "9", "journal-title": "EMBO J", "key": "722_CR79", "unstructured": "Frank SR, Adelstein MR, Hansen SH. GIT2 represses Crk- and Rac1-regulated cell spreading and Cdc42-mediated focal adhesion turnover. EMBO J. 2006;25(9):1848–59.", "volume": "25", "year": "2006" }, { "DOI": "10.1016/j.yexcr.2004.01.008", "author": "KV Stoletov", "doi-asserted-by": "publisher", "first-page": "258", "issue": "1", "journal-title": "Exp Cell Res", "key": "722_CR80", "unstructured": "Stoletov KV, Gong C, Terman BI. Nck and Crk mediate distinct VEGF-induced signaling pathways that serve overlapping functions in focal adhesion turnover and integrin activation. Exp Cell Res. 2004;295(1):258–68.", "volume": "295", "year": "2004" }, { "DOI": "10.1038/s41598-020-58135-y", "author": "CV Messias", "doi-asserted-by": "publisher", "first-page": "1378", "issue": "1", "journal-title": "Sci Rep", "key": "722_CR81", "unstructured": "Messias CV, Loss-Morais G, Carvalho JB, Gonzalez MN, Cunha DP, Vasconcelos Z, et al. Zika virus targets the human thymic epithelium. Sci Rep. 2020;10(1):1378.", "volume": "10", "year": "2020" }, { "DOI": "10.4161/cl.20222", "author": "JP Semblat", "doi-asserted-by": "publisher", "first-page": "126", "issue": "2", "journal-title": "Cell Logist", "key": "722_CR82", "unstructured": "Semblat JP, Doerig C. PAK in pathogen–host interactions. Cell Logist. 2012;2(2):126–31.", "volume": "2", "year": "2012" }, { "DOI": "10.3892/ijmm.2022.5204", "doi-asserted-by": "crossref", "key": "722_CR83", "unstructured": "Ye JJ, Wei SL, Wei YY, Zhang DW, Sun L, Wu HM, et al. RKIP suppresses the influenza A virus‑induced airway inflammatory response via the ERK/MAPK pathway. Int J Mol Med. 2023;51(1)." }, { "DOI": "10.1074/jbc.M703810200", "author": "K Nishi", "doi-asserted-by": "publisher", "first-page": "27503", "issue": "37", "journal-title": "J Biol Chem", "key": "722_CR84", "unstructured": "Nishi K, Saigo K. Cellular internalization of green fluorescent protein fused with herpes simplex virus protein VP22 via a lipid raft-mediated endocytic pathway independent of caveolae and Rho family GTPases but dependent on dynamin and Arf6. J Biol Chem. 2007;282(37):27503–17.", "volume": "282", "year": "2007" }, { "DOI": "10.1007/s12250-020-00343-x", "author": "Y Nie", "doi-asserted-by": "publisher", "first-page": "692", "issue": "4", "journal-title": "Virol Sin", "key": "722_CR85", "unstructured": "Nie Y, Hui L, Guo M, Yang W, Huang R, Chen J, et al. Rearrangement of actin cytoskeleton by Zika virus infection facilitates blood–testis barrier hyperpermeability. Virol Sin. 2021;36(4):692–705.", "volume": "36", "year": "2021" }, { "DOI": "10.3389/fimmu.2018.01871", "author": "M Hemshekhar", "doi-asserted-by": "publisher", "first-page": "1871", "journal-title": "Front Immunol", "key": "722_CR86", "unstructured": "Hemshekhar M, Choi KG, Mookherjee N. Host defense peptide LL-37-mediated chemoattractant properties, but not anti-inflammatory cytokine IL-1RA production, is selectively controlled by Cdc42 Rho GTPase via G protein-coupled receptors and JNK mitogen-activated protein kinase. Front Immunol. 2018;9:1871.", "volume": "9", "year": "2018" }, { "DOI": "10.3389/fmicb.2021.800935", "author": "HW Lee", "doi-asserted-by": "publisher", "journal-title": "Front Microbiol", "key": "722_CR87", "unstructured": "Lee HW, Choi Y, Lee AR, Yoon CH, Kim KH, Choi BS, et al. Hepatocyte growth factor-dependent antiviral activity of activated cdc42-associated kinase 1 against hepatitis B virus. Front Microbiol. 2021;12: 800935.", "volume": "12", "year": "2021" }, { "DOI": "10.1186/s12985-022-01814-1", "author": "S Montazersaheb", "doi-asserted-by": "publisher", "first-page": "92", "issue": "1", "journal-title": "Virol J", "key": "722_CR88", "unstructured": "Montazersaheb S, Hosseiniyan Khatibi SM, Hejazi MS, Tarhriz V, Farjami A, Ghasemian Sorbeni F, et al. COVID-19 infection: an overview on cytokine storm and related interventions. Virol J. 2022;19(1):92.", "volume": "19", "year": "2022" }, { "DOI": "10.1186/s13578-021-00677-3", "author": "J Qu", "doi-asserted-by": "publisher", "first-page": "163", "issue": "1", "journal-title": "Cell Biosci", "key": "722_CR89", "unstructured": "Qu J, Li J, Zhang Y, He R, Liu X, Gong K, et al. AKR1B10 promotes breast cancer cell proliferation and migration via the PI3K/AKT/NF-kappaB signaling pathway. Cell Biosci. 2021;11(1):163.", "volume": "11", "year": "2021" }, { "DOI": "10.1038/s41556-019-0348-8", "author": "H Senoo", "doi-asserted-by": "publisher", "first-page": "867", "issue": "7", "journal-title": "Nat Cell Biol", "key": "722_CR90", "unstructured": "Senoo H, Kamimura Y, Kimura R, Nakajima A, Sawai S, Sesaki H, et al. Phosphorylated Rho-GDP directly activates mTORC2 kinase towards AKT through dimerization with Ras-GTP to regulate cell migration. Nat Cell Biol. 2019;21(7):867–78.", "volume": "21", "year": "2019" }, { "DOI": "10.1042/BCJ20220103", "author": "JE Hunter", "doi-asserted-by": "publisher", "first-page": "2131", "issue": "19", "journal-title": "Biochem J", "key": "722_CR91", "unstructured": "Hunter JE, Campbell AE, Kerridge S, Fraser C, Hannaway NL, Luli S, et al. Up-regulation of the PI3K/AKT and RHO/RAC/PAK signalling pathways in CHK1 inhibitor resistant Emicro-Myc lymphoma cells. Biochem J. 2022;479(19):2131–51.", "volume": "479", "year": "2022" }, { "DOI": "10.1083/jcb.201703105", "author": "BK Tripathi", "doi-asserted-by": "publisher", "first-page": "4255", "issue": "12", "journal-title": "J Cell Biol", "key": "722_CR92", "unstructured": "Tripathi BK, Grant T, Qian X, Zhou M, Mertins P, Wang D, et al. Receptor tyrosine kinase activation of RhoA is mediated by AKT phosphorylation of DLC1. J Cell Biol. 2017;216(12):4255–70.", "volume": "216", "year": "2017" }, { "DOI": "10.4149/neo_2020_190818N781", "author": "X Xu", "doi-asserted-by": "publisher", "first-page": "614", "issue": "3", "journal-title": "Neoplasma", "key": "722_CR93", "unstructured": "Xu X, Zhou W, Chen Y, Wu K, Wang H, Zhang J, et al. Immediate early response protein 2 promotes the migration and invasion of hepatocellular carcinoma cells via regulating the activity of Rho GTPases. Neoplasma. 2020;67(3):614–22.", "volume": "67", "year": "2020" }, { "DOI": "10.1007/BF00690419", "author": "R Khosravi-Far", "doi-asserted-by": "publisher", "first-page": "67", "issue": "1", "journal-title": "Cancer Metastasis Rev", "key": "722_CR94", "unstructured": "Khosravi-Far R, Der CJ. The Ras signal transduction pathway. Cancer Metastasis Rev. 1994;13(1):67–89.", "volume": "13", "year": "1994" }, { "DOI": "10.3390/ijms21176312", "author": "A Arrazola Sastre", "doi-asserted-by": "publisher", "first-page": "6312", "issue": "17", "journal-title": "Int J Mol Sci", "key": "722_CR95", "unstructured": "Arrazola Sastre A, Luque Montoro M, Galvez-Martin P, Lacerda HM, Lucia AM, Llavero F, et al. Small GTPases of the Ras and Rho families switch on/off signaling pathways in neurodegenerative diseases. Int J Mol Sci. 2020;21(17):6312.", "volume": "21", "year": "2020" }, { "DOI": "10.1016/j.gene.2024.148366", "author": "M Bostanciklioglu", "doi-asserted-by": "publisher", "journal-title": "Gene", "key": "722_CR96", "unstructured": "Bostanciklioglu M, Igci M, Nigella Sativa UM. Anthemis hyaline and Citrus sinensis extracts reduce SARS-CoV-2 replication by fluctuating Rho GTPase, PI3K-AKT, and MAPK/ERK pathways in HeLa-CEACAM1a cells. Gene. 2024;911: 148366.", "volume": "911", "year": "2024" }, { "DOI": "10.1038/s41556-019-0438-7", "author": "H Bagci", "doi-asserted-by": "publisher", "first-page": "120", "issue": "1", "journal-title": "Nat Cell Biol", "key": "722_CR97", "unstructured": "Bagci H, Sriskandarajah N, Robert A, Boulais J, Elkholi IE, Tran V, et al. Mapping the proximity interaction network of the Rho-family GTPases reveals signalling pathways and regulatory mechanisms. Nat Cell Biol. 2020;22(1):120–34.", "volume": "22", "year": "2020" }, { "DOI": "10.1158/0008-5472.CAN-18-1889", "author": "T Hu", "doi-asserted-by": "publisher", "first-page": "114", "issue": "1", "journal-title": "Cancer Res", "key": "722_CR98", "unstructured": "Hu T, Chong Y, Lu S, Qin H, Ren M, Savage NM, et al. Loss of the BCR-FGFR1 GEF domain suppresses RHOA activation and enhances B-lymphomagenesis in mice. Cancer Res. 2019;79(1):114–24.", "volume": "79", "year": "2019" }, { "DOI": "10.1021/acs.jcim.3c01412", "author": "N Haspel", "doi-asserted-by": "publisher", "first-page": "862", "issue": "3", "journal-title": "J Chem Inf Model", "key": "722_CR99", "unstructured": "Haspel N, Jang H, Nussinov R. Allosteric activation of RhoA complexed with p115-RhoGEF deciphered by conformational dynamics. J Chem Inf Model. 2024;64(3):862–73.", "volume": "64", "year": "2024" }, { "DOI": "10.1128/JVI.72.11.8806-8812.1998", "author": "E Li", "doi-asserted-by": "publisher", "first-page": "8806", "issue": "11", "journal-title": "J Virol", "key": "722_CR100", "unstructured": "Li E, Stupack D, Bokoch GM, Nemerow GR. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J Virol. 1998;72(11):8806–12.", "volume": "72", "year": "1998" }, { "DOI": "10.1074/jbc.M011383200", "author": "I Arozarena", "doi-asserted-by": "publisher", "first-page": "21878", "issue": "24", "journal-title": "J Biol Chem", "key": "722_CR101", "unstructured": "Arozarena I, Matallanas D, Crespo P. Maintenance of CDC42 GDP-bound state by Rho-GDI inhibits MAP kinase activation by the exchange factor Ras-GRF. Evidence for Ras-GRF function being inhibited by Cdc42-GDP but unaffected by CDC42-GTP. J Biol Chem. 2001;276(24):21878–84.", "volume": "276", "year": "2001" }, { "DOI": "10.1089/ars.2012.4687", "author": "L Mitchell", "doi-asserted-by": "publisher", "first-page": "250", "issue": "3", "journal-title": "Antioxid Redox Signal", "key": "722_CR102", "unstructured": "Mitchell L, Hobbs GA, Aghajanian A, Campbell SL. Redox regulation of Ras and Rho GTPases: mechanism and function. Antioxid Redox Signal. 2013;18(3):250–8.", "volume": "18", "year": "2013" }, { "DOI": "10.3181/0703-MR-76", "author": "O Pochynyuk", "doi-asserted-by": "publisher", "first-page": "1258", "issue": "10", "journal-title": "Exp Biol Med (Maywood)", "key": "722_CR103", "unstructured": "Pochynyuk O, Stockand JD, Staruschenko A. Ion channel regulation by Ras, Rho, and Rab small GTPases. Exp Biol Med (Maywood). 2007;232(10):1258–65.", "volume": "232", "year": "2007" }, { "DOI": "10.1371/journal.pone.0021444", "author": "M Haidari", "doi-asserted-by": "publisher", "issue": "6", "journal-title": "PLoS ONE", "key": "722_CR104", "unstructured": "Haidari M, Zhang W, Ganjehei L, Ali M, Chen Z. Inhibition of MLC phosphorylation restricts replication of influenza virus—a mechanism of action for anti-influenza agents. PLoS ONE. 2011;6(6): e21444.", "volume": "6", "year": "2011" }, { "DOI": "10.1080/21505594.2022.2135724", "author": "W Fan", "doi-asserted-by": "publisher", "first-page": "1884", "issue": "1", "journal-title": "Virulence", "key": "722_CR105", "unstructured": "Fan W, Wang Y, Jiang S, Li Y, Yao X, Wang M, et al. Identification of key proteins of cytopathic biotype bovine viral diarrhoea virus involved in activating NF-kappaB pathway in BVDV-induced inflammatory response. Virulence. 2022;13(1):1884–99.", "volume": "13", "year": "2022" }, { "DOI": "10.3390/cells12101367", "author": "EJ Glotfelty", "doi-asserted-by": "publisher", "first-page": "1367", "issue": "10", "journal-title": "Cells", "key": "722_CR106", "unstructured": "Glotfelty EJ, Tovar YRLB, Hsueh SC, Tweedie D, Li Y, Harvey BK, et al. The RhoA-ROCK1/ROCK2 pathway exacerbates inflammatory signaling in immortalized and primary microglia. Cells. 2023;12(10):1367.", "volume": "12", "year": "2023" }, { "DOI": "10.4049/jimmunol.0802280", "author": "M Manukyan", "doi-asserted-by": "publisher", "first-page": "3522", "issue": "6", "journal-title": "J Immunol", "key": "722_CR107", "unstructured": "Manukyan M, Nalbant P, Luxen S, Hahn KM, Knaus UG. RhoA GTPase activation by TLR2 and TLR3 ligands: connecting via Src to NF-kappa B. J Immunol. 2009;182(6):3522–9.", "volume": "182", "year": "2009" }, { "DOI": "10.1152/ajprenal.00113.2014", "author": "K Matoba", "doi-asserted-by": "publisher", "first-page": "F571", "issue": "5", "journal-title": "Am J Physiol Renal Physiol", "key": "722_CR108", "unstructured": "Matoba K, Kawanami D, Tsukamoto M, Kinoshita J, Ito T, Ishizawa S, et al. Rho-kinase regulation of TNF-alpha-induced nuclear translocation of NF-kappaB RelA/p65 and M-CSF expression via p38 MAPK in mesangial cells. Am J Physiol Renal Physiol. 2014;307(5):F571–80.", "volume": "307", "year": "2014" }, { "DOI": "10.4049/jimmunol.173.11.6965", "author": "KN Anwar", "doi-asserted-by": "publisher", "first-page": "6965", "issue": "11", "journal-title": "J Immunol", "key": "722_CR109", "unstructured": "Anwar KN, Fazal F, Malik AB, Rahman A. RhoA/Rho-associated kinase pathway selectively regulates thrombin-induced intercellular adhesion molecule-1 expression in endothelial cells via activation of I kappa B kinase beta and phosphorylation of RelA/p65. J Immunol. 2004;173(11):6965–72.", "volume": "173", "year": "2004" }, { "DOI": "10.3390/microorganisms8071067", "author": "J Yu", "doi-asserted-by": "publisher", "first-page": "1067", "issue": "7", "journal-title": "Microorganisms.", "key": "722_CR110", "unstructured": "Yu J, Sun X, Goie JYG, Zhang Y. Regulation of host immune responses against influenza A virus infection by mitogen-activated protein kinases (MAPKs). Microorganisms. 2020;8(7):1067.", "volume": "8", "year": "2020" }, { "DOI": "10.1016/j.jsbmb.2006.06.030", "author": "YX Chen", "doi-asserted-by": "publisher", "first-page": "179", "issue": "4–5", "journal-title": "J Steroid Biochem Mol Biol", "key": "722_CR111", "unstructured": "Chen YX, Li ZB, Diao F, Cao DM, Fu CC, Lu J. Up-regulation of RhoB by glucocorticoids and its effects on the cell proliferation and NF-kappaB transcriptional activity. J Steroid Biochem Mol Biol. 2006;101(4–5):179–87.", "volume": "101", "year": "2006" }, { "DOI": "10.1038/s41419-022-04954-y", "author": "A Kumar", "doi-asserted-by": "publisher", "first-page": "520", "issue": "6", "journal-title": "Cell Death Dis", "key": "722_CR112", "unstructured": "Kumar A, Mishra S, Kumar A, Raut AA, Sato S, Takaoka A, et al. Essential role of Rnd1 in innate immunity during viral and bacterial infections. Cell Death Dis. 2022;13(6):520.", "volume": "13", "year": "2022" }, { "DOI": "10.1155/2015/671839", "author": "X Tang", "doi-asserted-by": "publisher", "journal-title": "Oxid Med Cell Longev", "key": "722_CR113", "unstructured": "Tang X, Guo D, Lin C, Shi Z, Qian R, Fu W, et al. hCLOCK causes rho-kinase-mediated endothelial dysfunction and NF-kappaB-mediated inflammatory responses. Oxid Med Cell Longev. 2015;2015: 671839.", "volume": "2015", "year": "2015" }, { "DOI": "10.4049/jimmunol.1502677", "author": "M Yoneda", "doi-asserted-by": "publisher", "first-page": "630", "issue": "2", "journal-title": "J Immunol", "key": "722_CR114", "unstructured": "Yoneda M, Hyun J, Jakubski S, Saito S, Nakajima A, Schiff ER, et al. Hepatitis B virus and DNA stimulation trigger a rapid innate immune response through NF-kappaB. J Immunol. 2016;197(2):630–43.", "volume": "197", "year": "2016" }, { "DOI": "10.1128/JVI.00946-16", "author": "S Dam", "doi-asserted-by": "publisher", "first-page": "7980", "issue": "17", "journal-title": "J Virol", "key": "722_CR115", "unstructured": "Dam S, Kracht M, Pleschka S, Schmitz ML. The influenza A virus genotype determines the antiviral function of NF-kappaB. J Virol. 2016;90(17):7980–90.", "volume": "90", "year": "2016" }, { "DOI": "10.1038/s41580-018-0067-1", "author": "M Dogterom", "doi-asserted-by": "publisher", "first-page": "38", "issue": "1", "journal-title": "Nat Rev Mol Cell Biol", "key": "722_CR116", "unstructured": "Dogterom M, Koenderink GH. Actin-microtubule crosstalk in cell biology. Nat Rev Mol Cell Biol. 2019;20(1):38–54.", "volume": "20", "year": "2019" }, { "DOI": "10.1128/jvi.01929-22", "author": "JX Lou", "doi-asserted-by": "publisher", "issue": "1", "journal-title": "J Virol", "key": "722_CR117", "unstructured": "Lou JX, Liu YY, Bai JS, Cheng Y, Zhang J, Liu CC, et al. Kinesin-1 regulates endocytic trafficking of classical swine fever virus along acetylated microtubules. J Virol. 2023;97(1): e0192922.", "volume": "97", "year": "2023" }, { "DOI": "10.1128/jvi.02205-21", "author": "DL Li", "doi-asserted-by": "publisher", "issue": "12", "journal-title": "J Virol", "key": "722_CR118", "unstructured": "Li DL, Yang MH, Liu LK, Meng C, Li MQ, Liu HP. Invasion and propagation of white spot syndrome virus: hijacking of the cytoskeleton, intracellular transport machinery, and nuclear import transporters. J Virol. 2022;96(12): e0220521.", "volume": "96", "year": "2022" }, { "DOI": "10.1128/JVI.79.2.1191-1206.2005", "author": "PP Naranatt", "doi-asserted-by": "publisher", "first-page": "1191", "issue": "2", "journal-title": "J Virol", "key": "722_CR119", "unstructured": "Naranatt PP, Krishnan HH, Smith MS, Chandran B. Kaposi’s sarcoma-associated herpesvirus modulates microtubule dynamics via RhoA-GTP-diaphanous 2 signaling and utilizes the dynein motors to deliver its DNA to the nucleus. J Virol. 2005;79(2):1191–206.", "volume": "79", "year": "2005" }, { "DOI": "10.1128/JVI.05666-11", "author": "JI Quetglas", "doi-asserted-by": "publisher", "first-page": "1758", "issue": "3", "journal-title": "J Virol", "key": "722_CR120", "unstructured": "Quetglas JI, Hernaez B, Galindo I, Munoz-Moreno R, Cuesta-Geijo MA, Alonso C. Small rho GTPases and cholesterol biosynthetic pathway intermediates in African swine fever virus infection. J Virol. 2012;86(3):1758–67.", "volume": "86", "year": "2012" }, { "DOI": "10.1038/s41590-021-01091-0", "author": "MS Diamond", "doi-asserted-by": "publisher", "first-page": "165", "issue": "2", "journal-title": "Nat Immunol", "key": "722_CR121", "unstructured": "Diamond MS, Kanneganti TD. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol. 2022;23(2):165–76.", "volume": "23", "year": "2022" }, { "DOI": "10.1152/ajplung.00118.2021", "author": "DT Linfield", "doi-asserted-by": "publisher", "first-page": "L189", "issue": "1", "journal-title": "Am J Physiol Lung Cell Mol Physiol", "key": "722_CR122", "unstructured": "Linfield DT, Gao N, Raduka A, Harford TJ, Piedimonte G, Rezaee F. RSV attenuates epithelial cell restitution by inhibiting actin cytoskeleton-dependent cell migration. Am J Physiol Lung Cell Mol Physiol. 2021;321(1):L189–203.", "volume": "321", "year": "2021" }, { "DOI": "10.3389/fimmu.2019.02500", "author": "V Upasani", "doi-asserted-by": "publisher", "first-page": "2500", "journal-title": "Front Immunol", "key": "722_CR123", "unstructured": "Upasani V, Vo HTM, Ung S, Heng S, Laurent D, Choeung R, et al. Impaired antibody-independent immune response of B cells in patients with acute dengue infection. Front Immunol. 2019;10:2500.", "volume": "10", "year": "2019" }, { "DOI": "10.4049/jimmunol.1602167", "author": "M Burbage", "doi-asserted-by": "publisher", "first-page": "1682", "issue": "5", "journal-title": "J Immunol", "key": "722_CR124", "unstructured": "Burbage M, Keppler SJ, Montaner B, Mattila PK, Batista FD. The small Rho GTPase TC10 modulates B cell immune responses. J Immunol. 2017;199(5):1682–95.", "volume": "199", "year": "2017" }, { "DOI": "10.1038/ni1470", "author": "A Hodges", "doi-asserted-by": "publisher", "first-page": "569", "issue": "6", "journal-title": "Nat Immunol", "key": "722_CR125", "unstructured": "Hodges A, Sharrocks K, Edelmann M, Baban D, Moris A, Schwartz O, et al. Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat Immunol. 2007;8(6):569–77.", "volume": "8", "year": "2007" }, { "DOI": "10.1084/jem.20141143", "author": "M Burbage", "doi-asserted-by": "publisher", "first-page": "53", "issue": "1", "journal-title": "J Exp Med", "key": "722_CR126", "unstructured": "Burbage M, Keppler SJ, Gasparrini F, Martinez-Martin N, Gaya M, Feest C, et al. Cdc42 is a key regulator of B cell differentiation and is required for antiviral humoral immunity. J Exp Med. 2015;212(1):53–72.", "volume": "212", "year": "2015" }, { "DOI": "10.1038/cddis.2017.170", "author": "Z Zhu", "doi-asserted-by": "publisher", "issue": "4", "journal-title": "Cell Death Dis", "key": "722_CR127", "unstructured": "Zhu Z, Li C, Du X, Wang G, Cao W, Yang F, et al. Foot-and-mouth disease virus infection inhibits LGP2 protein expression to exaggerate inflammatory response and promote viral replication. Cell Death Dis. 2017;8(4): e2747.", "volume": "8", "year": "2017" }, { "DOI": "10.1016/j.micinf.2023.105280", "author": "E Yau", "doi-asserted-by": "publisher", "issue": "3", "journal-title": "Microbes Infect", "key": "722_CR128", "unstructured": "Yau E, Yang L, Chen Y, Umstead TM, Stanley AE, Halstead ES, et al. SP-R210 isoforms of Myosin18A modulate endosomal sorting and recognition of influenza A virus infection in macrophages. Microbes Infect. 2024;26(3): 105280.", "volume": "26", "year": "2024" }, { "DOI": "10.1016/j.cellsig.2020.109599", "author": "S Alarifi", "doi-asserted-by": "publisher", "journal-title": "Cell Signal", "key": "722_CR129", "unstructured": "Alarifi S, Alkahtani S, Al-Qahtani AA, Stournaras C, Sourvinos G. Induction of interleukin-11 mediated by RhoA GTPase during human cytomegalovirus lytic infection. Cell Signal. 2020;70: 109599.", "volume": "70", "year": "2020" }, { "DOI": "10.1128/mBio.01476-14", "author": "BP Daniels", "doi-asserted-by": "publisher", "first-page": "e01476", "issue": "5", "journal-title": "MBio", "key": "722_CR130", "unstructured": "Daniels BP, Holman DW, Cruz-Orengo L, Jujjavarapu H, Durrant DM, Klein RS. Viral pathogen-associated molecular patterns regulate blood–brain barrier integrity via competing innate cytokine signals. MBio. 2014;5(5):e01476-e1514.", "volume": "5", "year": "2014" }, { "DOI": "10.1128/JVI.03176-12", "author": "W Jiang", "doi-asserted-by": "publisher", "first-page": "3039", "issue": "6", "journal-title": "J Virol", "key": "722_CR131", "unstructured": "Jiang W, Wang Q, Chen S, Gao S, Song L, Liu P, et al. Influenza A virus NS1 induces G0/G1 cell cycle arrest by inhibiting the expression and activity of RhoA protein. J Virol. 2013;87(6):3039–52.", "volume": "87", "year": "2013" }, { "DOI": "10.3390/ijms18030586", "author": "Y Xu", "doi-asserted-by": "publisher", "first-page": "586", "issue": "3", "journal-title": "Int J Mol Sci", "key": "722_CR132", "unstructured": "Xu Y, Qi Y, Luo J, Yang J, Xie Q, Deng C, et al. Hepatitis B virus X protein stimulates proliferation, wound closure and inhibits apoptosis of HuH-7 cells via CDC42. Int J Mol Sci. 2017;18(3):586.", "volume": "18", "year": "2017" }, { "DOI": "10.1016/j.molimm.2019.04.003", "author": "L Fu", "doi-asserted-by": "publisher", "first-page": "87", "journal-title": "Mol Immunol", "key": "722_CR133", "unstructured": "Fu L, Wang X, Zhai J, Qi W, Jing L, Ge Y, et al. Changes in apoptosis, proliferation and T lymphocyte subtype on thymic cells of SPF chickens infected with reticuloendotheliosis virus. Mol Immunol. 2019;111:87–94.", "volume": "111", "year": "2019" }, { "DOI": "10.1016/j.coviro.2020.03.001", "author": "K Ayasoufi", "doi-asserted-by": "publisher", "first-page": "18", "journal-title": "Curr Opin Virol", "key": "722_CR134", "unstructured": "Ayasoufi K, Pfaller CK. Seek and hide: the manipulating interplay of measles virus with the innate immune system. Curr Opin Virol. 2020;41:18–30.", "volume": "41", "year": "2020" }, { "DOI": "10.1016/j.csbj.2022.03.002", "author": "S Li", "doi-asserted-by": "publisher", "first-page": "1244", "journal-title": "Comput Struct Biotechnol J", "key": "722_CR135", "unstructured": "Li S, Zhou W, Li D, Pan T, Guo J, Zou H, et al. Comprehensive characterization of human-virus protein–protein interactions reveals disease comorbidities and potential antiviral drugs. Comput Struct Biotechnol J. 2022;20:1244–53.", "volume": "20", "year": "2022" }, { "DOI": "10.2217/fmb-2020-0092", "author": "J Wu", "doi-asserted-by": "publisher", "first-page": "445", "journal-title": "Future Microbiol", "key": "722_CR136", "unstructured": "Wu J, Gu J, Shen L, Jia X, Yin Y, Chen Y, et al. The role of host cell Rab GTPases in influenza A virus infections. Future Microbiol. 2021;16:445–52.", "volume": "16", "year": "2021" }, { "DOI": "10.3390/ijms222011164", "author": "V Gerlt", "doi-asserted-by": "publisher", "first-page": "11164", "issue": "20", "journal-title": "Int J Mol Sci", "key": "722_CR137", "unstructured": "Gerlt V, Mayr J, Del Sarto J, Ludwig S, Boergeling Y. Cellular Protein Phosphatase 2A Regulates Cell Survival Mechanisms in Influenza A Virus Infection. Int J Mol Sci. 2021;22(20):11164.", "volume": "22", "year": "2021" }, { "DOI": "10.3390/v11010046", "author": "S Bedi", "doi-asserted-by": "publisher", "first-page": "46", "issue": "1", "journal-title": "Viruses", "key": "722_CR138", "unstructured": "Bedi S, Ono A. Friend or foe: the role of the cytoskeleton in influenza A virus assembly. Viruses. 2019;11(1):46.", "volume": "11", "year": "2019" }, { "DOI": "10.3390/v12010117", "doi-asserted-by": "crossref", "key": "722_CR139", "unstructured": "Simpson C, Yamauchi Y. Microtubules in influenza virus entry and egress. Viruses. 2020;12(1)." }, { "DOI": "10.3390/v13102042", "author": "A Suttitheptumrong", "doi-asserted-by": "publisher", "first-page": "2042", "issue": "10", "journal-title": "Viruses", "key": "722_CR140", "unstructured": "Suttitheptumrong A, Mahutchariyakul T, Rawarak N, Reamtong O, Boonnak K, Pattanakitsakul SN. Altered moesin and actin cytoskeleton protein rearrangements affect transendothelial permeability in human endothelial cells upon dengue virus infection and TNF-alpha treatment. Viruses. 2021;13(10):2042.", "volume": "13", "year": "2021" }, { "DOI": "10.1080/1521654031000070645", "author": "PE Boehmer", "doi-asserted-by": "publisher", "first-page": "13", "issue": "1", "journal-title": "IUBMB Life", "key": "722_CR141", "unstructured": "Boehmer PE, Nimonkar AV. Herpes virus replication. IUBMB Life. 2003;55(1):13–22.", "volume": "55", "year": "2003" }, { "DOI": "10.1371/journal.pone.0044072", "author": "N Richerioux", "doi-asserted-by": "publisher", "issue": "8", "journal-title": "PLoS ONE", "key": "722_CR142", "unstructured": "Richerioux N, Blondeau C, Wiedemann A, Remy S, Vautherot JF, Denesvre C. Rho-ROCK and Rac-PAK signaling pathways have opposing effects on the cell-to-cell spread of Marek’s Disease Virus. PLoS ONE. 2012;7(8): e44072.", "volume": "7", "year": "2012" }, { "DOI": "10.3390/v10020092", "doi-asserted-by": "crossref", "key": "722_CR143", "unstructured": "Miranda-Saksena M, Denes CE, Diefenbach RJ, Cunningham AL. Infection and transport of herpes simplex virus type 1 in neurons: role of the cytoskeleton. Viruses. 2018;10(2)." }, { "DOI": "10.1128/JVI.02848-06", "author": "H Raghu", "doi-asserted-by": "publisher", "first-page": "7941", "issue": "15", "journal-title": "J Virol", "key": "722_CR144", "unstructured": "Raghu H, Sharma-Walia N, Veettil MV, Sadagopan S, Caballero A, Sivakumar R, et al. Lipid rafts of primary endothelial cells are essential for Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8-induced phosphatidylinositol 3-kinase and RhoA-GTPases critical for microtubule dynamics and nuclear delivery of viral DNA but dispensable for binding and entry. J Virol. 2007;81(15):7941–59.", "volume": "81", "year": "2007" }, { "DOI": "10.1186/s12985-023-02229-2", "author": "XM Li", "doi-asserted-by": "publisher", "first-page": "264", "issue": "1", "journal-title": "Virol J", "key": "722_CR145", "unstructured": "Li XM, Wang SP, Wang JY, Tang T, Wan B, Zeng L, et al. RhoA suppresses pseudorabies virus replication in vitro. Virol J. 2023;20(1):264.", "volume": "20", "year": "2023" }, { "DOI": "10.1016/j.virusres.2009.09.004", "author": "HA Yi", "doi-asserted-by": "publisher", "first-page": "89", "issue": "1–2", "journal-title": "Virus Res", "key": "722_CR146", "unstructured": "Yi HA, Kim MS, Jang SY, Lee YM, Ahn JH, Lee CH. Cellular signals involved in cyclooxygenase-2 expression induced by human cytomegalovirus. Virus Res. 2009;146(1–2):89–96.", "volume": "146", "year": "2009" }, { "DOI": "10.1016/j.virol.2015.02.040", "author": "X Liu", "doi-asserted-by": "publisher", "first-page": "568", "journal-title": "Virology", "key": "722_CR147", "unstructured": "Liu X, Cohen JI. The role of PI3K/Akt in human herpesvirus infection: from the bench to the bedside. Virology. 2015;479–480:568–77.", "volume": "479–480", "year": "2015" }, { "DOI": "10.1016/j.tim.2007.08.003", "author": "HW Favoreel", "doi-asserted-by": "publisher", "first-page": "426", "issue": "9", "journal-title": "Trends Microbiol", "key": "722_CR148", "unstructured": "Favoreel HW, Enquist LW, Feierbach B. Actin and Rho GTPases in herpesvirus biology. Trends Microbiol. 2007;15(9):426–33.", "volume": "15", "year": "2007" }, { "DOI": "10.1128/JVI.03634-14", "author": "F Myster", "doi-asserted-by": "publisher", "first-page": "3630", "issue": "7", "journal-title": "J Virol", "key": "722_CR149", "unstructured": "Myster F, Palmeira L, Sorel O, Bouillenne F, DePauw E, Schwartz-Cornil I, et al. Viral semaphorin inhibits dendritic cell phagocytosis and migration but is not essential for gammaherpesvirus-induced lymphoproliferation in malignant catarrhal fever. J Virol. 2015;89(7):3630–47.", "volume": "89", "year": "2015" }, { "DOI": "10.1007/s40011-021-01237-y", "author": "PK Gupta", "doi-asserted-by": "publisher", "first-page": "495", "issue": "3", "journal-title": "Proc Natl Acad Sci India Sect B Biol Sci", "key": "722_CR150", "unstructured": "Gupta PK, Saxena A. HIV/AIDS: current updates on the disease, treatment and prevention. Proc Natl Acad Sci India Sect B Biol Sci. 2021;91(3):495–510.", "volume": "91", "year": "2021" }, { "DOI": "10.1016/j.tim.2019.06.002", "author": "B Chen", "doi-asserted-by": "publisher", "first-page": "878", "issue": "10", "journal-title": "Trends Microbiol", "key": "722_CR151", "unstructured": "Chen B. Molecular mechanism of HIV-1 entry. Trends Microbiol. 2019;27(10):878–91.", "volume": "27", "year": "2019" }, { "DOI": "10.3390/v10020063", "author": "A Ospina Stella", "doi-asserted-by": "publisher", "first-page": "63", "issue": "2", "journal-title": "Viruses", "key": "722_CR152", "unstructured": "Ospina Stella A, Turville S. All-round manipulation of the actin cytoskeleton by HIV. Viruses. 2018;10(2):63.", "volume": "10", "year": "2018" }, { "DOI": "10.1016/j.it.2022.06.001", "author": "N Linden", "doi-asserted-by": "publisher", "first-page": "617", "issue": "8", "journal-title": "Trends Immunol", "key": "722_CR153", "unstructured": "Linden N, Jones RB. Potential multi-modal effects of provirus integration on HIV-1 persistence: lessons from other viruses. Trends Immunol. 2022;43(8):617–29.", "volume": "43", "year": "2022" }, { "DOI": "10.1128/JVI.78.17.9458-9473.2004", "author": "V Krishnan", "doi-asserted-by": "publisher", "first-page": "9458", "issue": "17", "journal-title": "J Virol", "key": "722_CR154", "unstructured": "Krishnan V, Zeichner SL. Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency. J Virol. 2004;78(17):9458–73.", "volume": "78", "year": "2004" }, { "DOI": "10.1073/pnas.2014783118", "doi-asserted-by": "crossref", "key": "722_CR155", "unstructured": "Ma G, Yasunaga JI, Shimura K, Takemoto K, Watanabe M, Amano M, et al. Human retroviral antisense mRNAs are retained in the nuclei of infected cells for viral persistence. Proc Natl Acad Sci USA. 2021;118(17)." }, { "DOI": "10.1016/S0960-9822(02)70792-6", "author": "X Lu", "doi-asserted-by": "publisher", "first-page": "1677", "issue": "12", "journal-title": "Curr Biol", "key": "722_CR156", "unstructured": "Lu X, Wu X, Plemenitas A, Yu H, Sawai ET, Abo A, et al. CDC42 and Rac1 are implicated in the activation of the Nef-associated kinase and replication of HIV-1. Curr Biol. 1996;6(12):1677–84.", "volume": "6", "year": "1996" }, { "DOI": "10.1186/s12977-017-0328-7", "author": "MB Lucera", "doi-asserted-by": "publisher", "first-page": "4", "issue": "1", "journal-title": "Retrovirology", "key": "722_CR157", "unstructured": "Lucera MB, Fleissner Z, Tabler CO, Schlatzer DM, Troyer Z, Tilton JC. HIV signaling through CD4 and CCR5 activates Rho family GTPases that are required for optimal infection of primary CD4+ T cells. Retrovirology. 2017;14(1):4.", "volume": "14", "year": "2017" }, { "DOI": "10.1038/jcbfm.2009.214", "author": "Y Zhong", "doi-asserted-by": "publisher", "first-page": "522", "issue": "3", "journal-title": "J Cereb Blood Flow Metab", "key": "722_CR158", "unstructured": "Zhong Y, Hennig B, Toborek M. Intact lipid rafts regulate HIV-1 Tat protein-induced activation of the Rho signaling and upregulation of P-glycoprotein in brain endothelial cells. J Cereb Blood Flow Metab. 2010;30(3):522–33.", "volume": "30", "year": "2010" }, { "DOI": "10.1038/s41579-023-00919-w", "author": "AC Langedijk", "doi-asserted-by": "publisher", "first-page": "734", "issue": "11", "journal-title": "Nat Rev Microbiol", "key": "722_CR159", "unstructured": "Langedijk AC, Bont LJ. Respiratory syncytial virus infection and novel interventions. Nat Rev Microbiol. 2023;21(11):734–49.", "volume": "21", "year": "2023" }, { "DOI": "10.1093/jac/dkh355", "author": "PJ Budge", "doi-asserted-by": "publisher", "first-page": "299", "issue": "2", "journal-title": "J Antimicrob Chemother", "key": "722_CR160", "unstructured": "Budge PJ, Graham BS. Inhibition of respiratory syncytial virus by RhoA-derived peptides: implications for the development of improved antiviral agents targeting heparin-binding viruses. J Antimicrob Chemother. 2004;54(2):299–302.", "volume": "54", "year": "2004" }, { "DOI": "10.1016/j.ejcb.2023.151336", "author": "N Gao", "doi-asserted-by": "publisher", "issue": "3", "journal-title": "Eur J Cell Biol", "key": "722_CR161", "unstructured": "Gao N, Raduka A, Rezaee F. Vitamin D(3) protects against respiratory syncytial virus-induced barrier dysfunction in airway epithelial cells via PKA signaling pathway. Eur J Cell Biol. 2023;102(3): 151336.", "volume": "102", "year": "2023" }, { "DOI": "10.1111/bph.12658", "author": "M Biro", "doi-asserted-by": "publisher", "first-page": "5491", "issue": "24", "journal-title": "Br J Pharmacol", "key": "722_CR162", "unstructured": "Biro M, Munoz MA, Weninger W. Targeting Rho-GTPases in immune cell migration and inflammation. Br J Pharmacol. 2014;171(24):5491–506.", "volume": "171", "year": "2014" }, { "DOI": "10.1159/000151729", "author": "K Iesato", "doi-asserted-by": "publisher", "first-page": "434", "issue": "4", "journal-title": "Respiration", "key": "722_CR163", "unstructured": "Iesato K, Tatsumi K, Saito K, Ogasawara T, Sakao S, Tada Y, et al. Tiotropium bromide attenuates respiratory syncytial virus replication in epithelial cells. Respiration. 2008;76(4):434–41.", "volume": "76", "year": "2008" }, { "author": "PF Torrence", "first-page": "226", "issue": "4", "journal-title": "Drug News Perspect", "key": "722_CR164", "unstructured": "Torrence PF. RSV infections: developments in the search for new drugs. Drug News Perspect. 2000;13(4):226–33.", "volume": "13", "year": "2000" }, { "DOI": "10.1007/978-3-031-40086-5_9", "author": "RJ Sugrue", "doi-asserted-by": "publisher", "first-page": "227", "journal-title": "Subcell Biochem", "key": "722_CR165", "unstructured": "Sugrue RJ, Tan BH. Defining the assembleome of the respiratory syncytial virus. Subcell Biochem. 2023;106:227–49.", "volume": "106", "year": "2023" }, { "DOI": "10.3390/v10030120", "author": "ACD Matos", "doi-asserted-by": "publisher", "first-page": "120", "issue": "3", "journal-title": "Viruses", "key": "722_CR166", "unstructured": "Matos ACD, Rehfeld IS, Guedes M, Lobato ZIP. Bovine vaccinia: insights into the disease in cattle. Viruses. 2018;10(3):120.", "volume": "10", "year": "2018" }, { "DOI": "10.1126/science.1122411", "author": "F Valderrama", "doi-asserted-by": "publisher", "first-page": "377", "issue": "5759", "journal-title": "Science", "key": "722_CR167", "unstructured": "Valderrama F, Cordeiro JV, Schleich S, Frischknecht F, Way M. Vaccinia virus-induced cell motility requires F11L-mediated inhibition of RhoA signaling. Science. 2006;311(5759):377–81.", "volume": "311", "year": "2006" }, { "DOI": "10.1186/s12917-015-0417-6", "author": "PY Lin", "doi-asserted-by": "publisher", "first-page": "103", "journal-title": "BMC Vet Res", "key": "722_CR168", "unstructured": "Lin PY, Chang CD, Chen YC, Shih WL. RhoA/ROCK1 regulates Avian Reovirus S1133-induced switch from autophagy to apoptosis. BMC Vet Res. 2015;11:103.", "volume": "11", "year": "2015" }, { "DOI": "10.1016/S1016-8478(23)14014-3", "author": "HJ Liu", "doi-asserted-by": "publisher", "first-page": "396", "issue": "4", "journal-title": "Mol Cells", "key": "722_CR169", "unstructured": "Liu HJ, Lin PY, Wang LR, Hsu HY, Liao MH, Shih WL. Activation of small GTPases RhoA and Rac1 is required for avian reovirus p10-induced syncytium formation. Mol Cells. 2008;26(4):396–403.", "volume": "26", "year": "2008" }, { "DOI": "10.1016/j.antiviral.2018.06.011", "author": "Y Yin", "doi-asserted-by": "publisher", "first-page": "92", "journal-title": "Antiviral Res", "key": "722_CR170", "unstructured": "Yin Y, Chen S, Hakim MS, Wang W, Xu L, Dang W, et al. 6-Thioguanine inhibits rotavirus replication through suppression of Rac1 GDP/GTP cycling. Antiviral Res. 2018;156:92–101.", "volume": "156", "year": "2018" }, { "DOI": "10.1007/s11033-020-05980-9", "author": "D Fan", "doi-asserted-by": "publisher", "first-page": "9739", "issue": "12", "journal-title": "Mol Biol Rep", "key": "722_CR171", "unstructured": "Fan D, Wu N, Zhang J, Wang Z, Wang P, Gao N, et al. Effect of the Rho GTPase inhibitor-1 on the entry of dengue serotype 2 virus into EAhy926 cells. Mol Biol Rep. 2020;47(12):9739–47.", "volume": "47", "year": "2020" }, { "DOI": "10.3390/ijms23094738", "author": "D Yu", "doi-asserted-by": "publisher", "first-page": "4738", "issue": "9", "journal-title": "Int J Mol Sci", "key": "722_CR172", "unstructured": "Yu D, Wang L, Wang Y. Recent advances in application of computer-aided drug design in anti-influenza A virus drug discovery. Int J Mol Sci. 2022;23(9):4738.", "volume": "23", "year": "2022" }, { "DOI": "10.1080/07391102.2023.2259496", "doi-asserted-by": "crossref", "key": "722_CR173", "unstructured": "Mufti IU, Sufyan M, Shahid I, Alzahrani AR, Shahzad N, IM MA, et al. Computer-aided identification of dengue virus NS2B/NS3 protease inhibitors: an integrated molecular modelling approach for screening of phytochemicals. J Biomol Struct Dyn. 2023:1–12." }, { "DOI": "10.1007/s11030-024-10850-8", "author": "F Finke", "doi-asserted-by": "publisher", "first-page": "281", "journal-title": "Mol Divers", "key": "722_CR174", "unstructured": "Finke F, Hungerland J, Solov’yov IA, Schuhmann F. Different receptor models show differences in ligand binding strength and location: a computational drug screening for the tick-borne encephalitis virus. Mol Divers. 2024;29:281.", "volume": "29", "year": "2024" }, { "DOI": "10.1080/07391102.2020.1794974", "author": "MM Rahman", "doi-asserted-by": "publisher", "first-page": "6231", "issue": "16", "journal-title": "J Biomol Struct Dyn", "key": "722_CR175", "unstructured": "Rahman MM, Saha T, Islam KJ, Suman RH, Biswas S, Rahat EU, et al. Virtual screening, molecular dynamics and structure–activity relationship studies to identify potent approved drugs for Covid-19 treatment. J Biomol Struct Dyn. 2021;39(16):6231–41.", "volume": "39", "year": "2021" }, { "DOI": "10.1016/j.drup.2024.101053", "author": "S Du", "doi-asserted-by": "publisher", "journal-title": "Drug Resist Updat", "key": "722_CR176", "unstructured": "Du S, Hu X, Menendez-Arias L, Zhan P, Liu X. Target-based drug design strategies to overcome resistance to antiviral agents: opportunities and challenges. Drug Resist Updat. 2024;73: 101053.", "volume": "73", "year": "2024" }, { "DOI": "10.1684/vir.2020.0864", "author": "S Burrel", "doi-asserted-by": "publisher", "first-page": "325", "issue": "5", "journal-title": "Virologie (Montrouge)", "key": "722_CR177", "unstructured": "Burrel S, Topalis D, Boutolleau D. Herpes simplex virus resistance to antivirals. Virologie (Montrouge). 2020;24(5):325–42.", "volume": "24", "year": "2020" }, { "DOI": "10.1016/j.drudis.2020.11.014", "author": "H Patel", "doi-asserted-by": "publisher", "first-page": "503", "issue": "2", "journal-title": "Drug Discov Today", "key": "722_CR178", "unstructured": "Patel H, Kukol A. Integrating molecular modelling methods to advance influenza A virus drug discovery. Drug Discov Today. 2021;26(2):503–10.", "volume": "26", "year": "2021" }, { "DOI": "10.3390/ijms23010393", "author": "S Kralj", "doi-asserted-by": "publisher", "first-page": "393", "issue": "1", "journal-title": "Int J Mol Sci", "key": "722_CR179", "unstructured": "Kralj S, Jukic M, Bren U. Commercial SARS-CoV-2 targeted, protease inhibitor focused and protein–protein interaction inhibitor focused molecular libraries for virtual screening and drug design. Int J Mol Sci. 2021;23(1):393.", "volume": "23", "year": "2021" }, { "DOI": "10.1016/bs.apcsb.2019.11.008", "author": "A Bagchi", "doi-asserted-by": "publisher", "first-page": "1", "journal-title": "Adv Protein Chem Struct Biol", "key": "722_CR180", "unstructured": "Bagchi A. Latest trends in structure based drug design with protein targets. Adv Protein Chem Struct Biol. 2020;121:1–23.", "volume": "121", "year": "2020" }, { "DOI": "10.1038/s41401-021-00851-w", "author": "CR Wu", "doi-asserted-by": "publisher", "first-page": "3021", "issue": "12", "journal-title": "Acta Pharmacol Sin", "key": "722_CR181", "unstructured": "Wu CR, Yin WC, Jiang Y, Xu HE. Structure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19. Acta Pharmacol Sin. 2022;43(12):3021–33.", "volume": "43", "year": "2022" }, { "DOI": "10.1038/s41598-022-21610-9", "author": "R Kumar", "doi-asserted-by": "publisher", "first-page": "17811", "issue": "1", "journal-title": "Sci Rep", "key": "722_CR182", "unstructured": "Kumar R, Chander Y, Khandelwal N, Verma A, Rawat KD, Shringi BN, et al. ROCK1/MLC2 inhibition induces decay of viral mRNA in BPXV infected cells. Sci Rep. 2022;12(1):17811.", "volume": "12", "year": "2022" }, { "DOI": "10.1073/pnas.2014242118", "doi-asserted-by": "crossref", "key": "722_CR183", "unstructured": "Chichili VPR, Chew TW, Shankar S, Er SY, Chin CF, Jobichen C, et al. Structural basis for p50RhoGAP BCH domain-mediated regulation of Rho inactivation. Proc Natl Acad Sci USA. 2021;118(21)." }, { "DOI": "10.1007/978-1-4939-9089-4_2", "author": "P Shinn", "doi-asserted-by": "publisher", "first-page": "11", "journal-title": "Methods Mol Biol", "key": "722_CR184", "unstructured": "Shinn P, Chen L, Ferrer M, Itkin Z, Klumpp-Thomas C, McKnight C, et al. High-throughput screening for drug combinations. Methods Mol Biol. 2019;1939:11–35.", "volume": "1939", "year": "2019" }, { "DOI": "10.1016/j.isci.2019.07.003", "author": "LD Jasenosky", "doi-asserted-by": "publisher", "first-page": "1279", "journal-title": "iScience.", "key": "722_CR185", "unstructured": "Jasenosky LD, Cadena C, Mire CE, Borisevich V, Haridas V, Ranjbar S, et al. The FDA-approved oral drug nitazoxanide amplifies host antiviral responses and inhibits Ebola virus. iScience. 2019;19:1279–90.", "volume": "19", "year": "2019" }, { "DOI": "10.1016/j.jep.2019.111901", "author": "H Xu", "doi-asserted-by": "publisher", "journal-title": "J Ethnopharmacol", "key": "722_CR186", "unstructured": "Xu H, He L, Chen J, Hou X, Fan F, Wu H, et al. Different types of effective fractions from Radix Isatidis revealed a multiple-target synergy effect against respiratory syncytial virus through RIG-I and MDA5 signaling pathways, a pilot study to testify the theory of superposition of traditional Chinese Medicine efficacy. J Ethnopharmacol. 2019;239: 111901.", "volume": "239", "year": "2019" }, { "DOI": "10.1128/CMR.00168-19", "doi-asserted-by": "crossref", "key": "722_CR187", "unstructured": "Kumar N, Sharma S, Kumar R, Tripathi BN, Barua S, Ly H, et al. Host-directed antiviral therapy. Clin Microbiol Rev. 2020;33(3)." }, { "DOI": "10.1038/s41419-023-05633-2", "author": "X Liu", "doi-asserted-by": "publisher", "first-page": "118", "issue": "2", "journal-title": "Cell Death Dis.", "key": "722_CR188", "unstructured": "Liu X, Jiang Y, Zhou H, Zhao X, Li M, Bao Z, et al. Dasabuvir suppresses esophageal squamous cell carcinoma growth in vitro and in vivo through targeting ROCK1. Cell Death Dis. 2023;14(2):118.", "volume": "14", "year": "2023" }, { "DOI": "10.1038/s41598-018-30460-3", "author": "SH Lee", "doi-asserted-by": "publisher", "first-page": "12469", "issue": "1", "journal-title": "Sci Rep.", "key": "722_CR189", "unstructured": "Lee SH, Moon JS, Pak BY, Kim GW, Lee W, Cho H, et al. HA1077 displays synergistic activity with daclatasvir against hepatitis C virus and suppresses the emergence of NS5A resistance-associated substitutions in mice. Sci Rep. 2018;8(1):12469.", "volume": "8", "year": "2018" } ], "reference-count": 189, "references-count": 189, "relation": {}, "resource": { "primary": { "URL": "https://cmbl.biomedcentral.com/articles/10.1186/s11658-025-00722-w" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "Rho-GTPases subfamily: cellular defectors orchestrating viral infection", "type": "journal-article", "update-policy": "https://doi.org/10.1007/springer_crossmark_policy", "volume": "30" }
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit