Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All ivermectin studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19ivm.org COVID-19 treatment researchIvermectinIvermectin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Ivermectin: A Closer Look at a Potential Remedy

Elkholy et al., Cureus, doi:10.7759/cureus.10378
Sep 2020  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Ivermectin for COVID-19
4th treatment shown to reduce risk in August 2020, now with p < 0.00000000001 from 105 studies, recognized in 23 countries.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 109 treatments. c19ivm.org
Proposal to use inhaled ivermectin for COVID-19. Author notes that ivermectin may have broad-spectrum antiviral properties and research in this area may also be beneficial for other emerging viral outbreaks in the future.
Reviews covering ivermectin for COVID-19 include1-45.
Elkholy et al., 11 Sep 2020, peer-reviewed, 4 authors. Contact: dr.karimelkholy@gmail.com.
This PaperIvermectinAll
Ivermectin: A Closer Look at a Potential Remedy
Karim O Elkholy, Omar Hegazy, Burak Erdinc, Hesham Abowali
Cureus, doi:10.7759/cureus.10378
Amid the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, the search for effective treatment and vaccines has been exponentially on the rise. Finding effective treatment has been the core of attention of many scientific reports and antivirals are in the center of those treatments. Numerous antivirals are being studied for the management of the coronavirus disease 2019 (COVID-19) pneumonia caused by the SARS-CoV-2. Remdesivir was the first drug to gain emergency FDA approval to be used in COVID-19. Similarly, favipiravir, an anti-influenza drug, is being studied as a potential agent against COVID-19. Contrastingly, hydroxychloroquine has been a controversial drug in the management of COVID-19. Nevertheless, the National Institute of Health (NIH), along with the World Health Organization (WHO), have discontinued clinical trials for hydroxychloroquine as the drug showed little or no survival benefit. Ivermectin, an antihelminthic drug, has shown antiviral properties previously. Additionally, it was described to be effective in vivo against the SARS-CoV-2. However, its survival benefit in patients with COVID-19 has not been documented. We herein propose the theory of inhaled ivermectin which can attain the desired lung concentration that will render it effective against SARS-CoV-2.
Additional Information Disclosures Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.
References
Beigel, Tomashek, Dodd, Remdesivir for the treatment of Covid-19 -preliminary report, {Epub ahead of print}, doi:10.1056/nejmoa2007764
Billiard, Baker, Chandrasekaran, Van Den Berg, Yang et al., PA4125: Dry powder inhaled ribavirin in healthy volunteers: safety, tolerability, lung and systemic pharmacokinetics, Eur Respir J, doi:10.1183/1393003.congress-2017.PA4125
Boivin, Goyette, Hardy, Aoki, Wagner et al., Rapid antiviral effect of inhaled zanamivir in the treatment of naturally occurring influenza in otherwise healthy adults, J Infect Dis, doi:10.1086/315392
Borghardt, Kloft, Sharma, Inhaled therapy in respiratory disease: the complex interplay of pulmonary kinetic processes, Can Respir J, doi:10.1155/2018/2732017
Cai, Yang, Liu, Experimental treatment with favipiravir for COVID-19: an open-label control study, doi:10.1016/j.eng.2020.03.007
Caly, Druce, Catton, Jans, Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Res, doi:10.1016/j.antiviral.2020.104787
Canga, Prieto, Liébana, Martínez, Vega et al., The pharmacokinetics and interactions of ivermectin in humans--a mini-review, AAPS J, doi:10.1208/s12248-007-9000-9
Chiang, Sassaroli, Louie, Chen, Stecher et al., Inhibition of HIV-1 replication by hydroxychloroquine: mechanism of action and comparison with zidovudine, Clin Ther, doi:10.1016/s0149-2918(96)80063-4
Du, Chen, Favipiravir: pharmacokinetics and concerns about clinical trials for 2019-nCoV infection, Clin Pharmacol Ther, doi:10.1002/cpt.1844
Fantini, Scala, Chahinian, Yahi, Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection, Int J Antimicrob Agents, doi:10.1016/j.ijantimicag.2020.105960
Franks, Chong, Chui, Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore, Hum Pathol, doi:10.1016/s0046-8177(03)00367-8
Furuta, Gowen, Takahashi, Shiraki, Smee et al., Favipiravir (T-705), a novel viral RNA polymerase inhibitor, Antiviral Res, doi:10.1016/j.antiviral.2013.09.015
Gordon, Tchesnokov, Feng, Porter, Götte, The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus, J Biol Chem, doi:10.1074/jbc.AC120.013056
Hiscox, Wurm, Wilson, Britton, Cavanagh et al., The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus, J Virol, doi:10.1128/jvi.75.1.506-512.2001
Ji, Cen, Lin, Hu, Fang et al., Study on the subacute inhalation toxicity of ivermectin TC in rats, Chinese J Comp Med
Krishna, Klotz, Determination of ivermectin in human plasma by high-performance liquid chromatography, Arzneimittelforschung
Kumar, Nyodu, Maurya, Saxena, Morphology, Genome Organization, Replication, and Pathogenesis 2020 Elkholy et al, Coronavirus Disease, doi:10.1007/978-981-15-4814-7_3
Martines, Ritter, Matkovic, Pathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United States, Emerg Infect Dis, doi:10.3201/eid2609.202095
Rajter, Sherman, Fatteh, Vogel, Sacks et al., ICON (Ivermectin in COvid Nineteen) study: use of ivermectin is associated with lower mortality in hospitalized patients with COVID19, doi:10.1101/2020.06.06.20124461
Rizzo, Ivermectin, antiviral properties and COVID-19: a possible new mechanism of action, Naunyn Schmiedebergs Arch Pharmacol, doi:10.1007/s00210-020-01902-5
Schmith, Zhou, Lohmer, The approved dose of ivermectin alone is not the ideal dose for the treatment of COVID-19, Clin Pharmacol Ther, doi:10.1002/cpt.1889
Timani, Liao, Ye, Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus, Virus Res, doi:10.1016/j.virusres.2005.05.007
Wulan, Heydet, Walker, Gahan, Ghildyal, Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses, Front Microbiol, doi:10.3389/fmicb.2015.00553€
Yang, Atkinson, Wang, Lee, Bogoyevitch et al., The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer, Antiviral Res, doi:10.1016/j.antiviral.2020.104760
{ 'indexed': {'date-parts': [[2023, 1, 7]], 'date-time': '2023-01-07T22:51:47Z', 'timestamp': 1673131907825}, 'reference-count': 28, 'publisher': 'Cureus, Inc.', 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'published-print': {'date-parts': [[2020, 9, 11]]}, 'DOI': '10.7759/cureus.10378', 'type': 'journal-article', 'created': {'date-parts': [[2020, 9, 11]], 'date-time': '2020-09-11T15:05:02Z', 'timestamp': 1599836702000}, 'source': 'Crossref', 'is-referenced-by-count': 1, 'title': 'Ivermectin: A Closer Look at a Potential Remedy', 'prefix': '10.7759', 'author': [ {'given': 'Karim O', 'family': 'Elkholy', 'sequence': 'first', 'affiliation': []}, {'given': 'Omar', 'family': 'Hegazy', 'sequence': 'additional', 'affiliation': []}, {'given': 'Burak', 'family': 'Erdinc', 'sequence': 'additional', 'affiliation': []}, {'given': 'Hesham', 'family': 'Abowali', 'sequence': 'additional', 'affiliation': []}], 'member': '4492', 'reference': [ { 'key': 'ref1', 'unstructured': 'WHO Coronavirus Disease (COVID-19) Dashboard. (2020). ' 'http.//coronavirus.jhu.edu/map.html.'}, { 'key': 'ref2', 'doi-asserted-by': 'publisher', 'article-title': 'Morphology, Genome Organization, Replication, and Pathogenesis of ' 'Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)', 'author': 'Kumar S', 'year': '2020', 'unstructured': 'Kumar S, Nyodu R, Maurya V, Saxena SK. Morphology, Genome Organization, ' 'Replication, and Pathogenesis of Severe Acute Respiratory Syndrome ' 'Coronavirus 2 (SARS-CoV-2). Coronavirus Disease 2019 (COVID-19). ' 'Epidemiology, Pathogenesis, Diagnosis, and Therapeutics. Saxena SK (ed): ' 'Springer, Singapore; 2020. 23-31. 10.1007/978-981-15-4814-7_3', 'DOI': '10.1007/978-981-15-4814-7_3'}, { 'key': 'ref3', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/s0046-8177(03)00367-8', 'article-title': 'Lung pathology of severe acute respiratory syndrome (SARS): a study of ' '8 autopsy cases from Singapore', 'volume': '34', 'author': 'Franks TJ', 'year': '2003', 'unstructured': 'Franks TJ, Chong PY, Chui P, et al.. Lung pathology of severe acute ' 'respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. ' 'Hum Pathol. 2003, 34:743-748. 10.1016/s0046-8177(03)00367-8', 'journal-title': 'Hum Pathol'}, { 'key': 'ref4', 'doi-asserted-by': 'publisher', 'DOI': '10.3201/eid2609.202095', 'article-title': 'Pathology and pathogenesis of SARS-CoV-2 associated with fatal ' 'coronavirus disease, United States', 'volume': '26', 'author': 'Martines RB', 'year': '2020', 'unstructured': 'Martines RB, Ritter JM, Matkovic E, et al.. Pathology and pathogenesis ' 'of SARS-CoV-2 associated with fatal coronavirus disease, United States. ' 'Emerg Infect Dis. 2020, 26:2005-2015. 10.3201/eid2609.202095', 'journal-title': 'Emerg Infect Dis'}, { 'key': 'ref5', 'unstructured': 'CDC Public Health Image Library (PHIL) #23312. (2020). Accessed. August ' '31, 2020: http://phil.cdc.gov/Details.aspx?pid=23312.'}, { 'key': 'ref6', 'doi-asserted-by': 'publisher', 'DOI': '10.1074/jbc.AC120.013056', 'article-title': 'The antiviral compound remdesivir potently inhibits RNA-dependent RNA ' 'polymerase from Middle East respiratory syndrome coronavirus', 'volume': '295', 'author': 'Gordon CJ', 'year': '2020', 'unstructured': 'Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral ' 'compound remdesivir potently inhibits RNA-dependent RNA polymerase from ' 'Middle East respiratory syndrome coronavirus. J Biol Chem. 2020, ' '295:4773-4779. 10.1074/jbc.AC120.013056', 'journal-title': 'J Biol Chem'}, { 'key': 'ref7', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/nejmoa2007764', 'article-title': 'Remdesivir for the treatment of Covid-19 — preliminary report', 'volume': '{Epub ahead of print}', 'author': 'Beigel JH', 'year': '2020', 'unstructured': 'Beigel JH, Tomashek KM, Dodd LE, et al.. Remdesivir for the treatment of ' 'Covid-19 — preliminary report. N Engl J Med. 2020, {Epub ahead of ' 'print}:NEJMoa2007764. 10.1056/nejmoa2007764', 'journal-title': 'N Engl J Med'}, { 'key': 'ref8', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/s0149-2918(96)80063-4', 'article-title': 'Inhibition of HIV-1 replication by hydroxychloroquine: mechanism of ' 'action and comparison with zidovudine', 'volume': '18', 'author': 'Chiang G', 'year': '1996', 'unstructured': 'Chiang G, Sassaroli M, Louie M, Chen H, Stecher VJ, Sperber K. ' 'Inhibition of HIV-1 replication by hydroxychloroquine: mechanism of ' 'action and comparison with zidovudine. Clin Ther. 1996, 18:1080-1092. ' '10.1016/s0149-2918(96)80063-4', 'journal-title': 'Clin Ther'}, { 'key': 'ref9', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ijantimicag.2020.105960', 'article-title': 'Structural and molecular modelling studies reveal a new mechanism of ' 'action of chloroquine and hydroxychloroquine against SARS-CoV-2 ' 'infection', 'volume': '55', 'author': 'Fantini J', 'year': '2020', 'unstructured': 'Fantini J, Di Scala C, Chahinian H, Yahi N. Structural and molecular ' 'modelling studies reveal a new mechanism of action of chloroquine and ' 'hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob ' 'Agents. 2020, 55:105960. 10.1016/j.ijantimicag.2020.105960', 'journal-title': 'Int J Antimicrob Agents'}, { 'key': 'ref10', 'unstructured': 'NIH halts clinical trial of hydroxychloroquine. (2020). ' 'http.//www.nih.gov/news-events/news-releases/nih-halts-clinical-trial-hydroxychloroquine.'}, { 'key': 'ref11', 'unstructured': 'WHO discontinues hydroxychloroquine and lopinavir/ritonavir treatment ' 'arms for COVID-19. (2020). Accessed. August 31, 2020: ' 'http://www.who.int/news-room/detail/04-07-2020-who-discontinues-hydroxychloroquine-and-lopinavir-ritonavir-treatment-....'}, { 'key': 'ref12', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/cpt.1844', 'article-title': 'Favipiravir: pharmacokinetics and concerns about clinical trials for ' '2019-nCoV infection', 'volume': '108', 'author': 'Du YX', 'year': '2020', 'unstructured': 'Du YX, Chen XP. Favipiravir: pharmacokinetics and concerns about ' 'clinical trials for 2019-nCoV infection. Clin Pharmacol Ther. 2020, ' '108:242-247. 10.1002/cpt.1844', 'journal-title': 'Clin Pharmacol Ther'}, { 'key': 'ref13', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2013.09.015', 'article-title': 'Favipiravir (T-705), a novel viral RNA polymerase inhibitor', 'volume': '100', 'author': 'Furuta Y', 'year': '2013', 'unstructured': 'Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. ' 'Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral ' 'Res. 2013, 100:446-454. 10.1016/j.antiviral.2013.09.015', 'journal-title': 'Antiviral Res'}, { 'key': 'ref14', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.eng.2020.03.007', 'article-title': 'Experimental treatment with favipiravir for COVID-19: an open-label ' 'control study', 'volume': '{Epub ahead of print}', 'author': 'Cai Q', 'year': '2020', 'unstructured': 'Cai Q, Yang M, Liu D, et al.. Experimental treatment with favipiravir ' 'for COVID-19: an open-label control study. Engineering (Beijing). 2020, ' '{Epub ahead of print}:10.1016/j.eng.2020.03.007. ' '10.1016/j.eng.2020.03.007', 'journal-title': 'Engineering (Beijing)'}, { 'key': 'ref15', 'doi-asserted-by': 'publisher', 'DOI': '10.1208/s12248-007-9000-9', 'article-title': 'The pharmacokinetics and interactions of ivermectin in humans--a ' 'mini-review', 'volume': '10', 'author': 'González Canga A', 'year': '2008', 'unstructured': 'González Canga A, Sahagún Prieto AM, Diez Liébana MJ, Fernández Martínez ' 'N, Sierra Vega M, García Vieitez JJ. The pharmacokinetics and ' 'interactions of ivermectin in humans--a mini-review. AAPS J. 2008, ' '10:42-46. 10.1208/s12248-007-9000-9', 'journal-title': 'AAPS J'}, { 'key': 'ref16', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s00210-020-01902-5', 'article-title': 'Ivermectin, antiviral properties and COVID- 19: a possible new ' 'mechanism of action', 'volume': '393', 'author': 'Rizzo E', 'year': '2020', 'unstructured': 'Rizzo E. Ivermectin, antiviral properties and COVID- 19: a possible new ' 'mechanism of action. Naunyn Schmiedebergs Arch Pharmacol. 2020, ' '393:1153-1156. 10.1007/s00210-020-01902-5', 'journal-title': 'Naunyn Schmiedebergs Arch Pharmacol'}, { 'key': 'ref17', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2020.104760', 'article-title': 'The broad spectrum antiviral ivermectin targets the host nuclear ' 'transport importin α/β1 heterodimer', 'volume': '177', 'author': 'Yang SNY', 'year': '2020', 'unstructured': 'Yang SNY, Atkinson SC, Wang C, Lee A, Bogoyevitch MA, Borg NA, Jans DA. ' 'The broad spectrum antiviral ivermectin targets the host nuclear ' 'transport importin α/β1 heterodimer. Antiviral Res. 2020, 177:104760. ' '10.1016/j.antiviral.2020.104760', 'journal-title': 'Antiviral Res'}, { 'key': 'ref18', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.virusres.2005.05.007', 'article-title': 'Nuclear/nucleolar localization properties of C-terminal nucleocapsid ' 'protein of SARS coronavirus', 'volume': '114', 'author': 'Timani KA', 'year': '2005', 'unstructured': 'Timani KA, Liao Q, Ye L, et al.. Nuclear/nucleolar localization ' 'properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus ' 'Res. 2005, 114:23-34. 10.1016/j.virusres.2005.05.007', 'journal-title': 'Virus Res'}, { 'key': 'ref19', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/jvi.75.1.506-512.2001', 'article-title': 'The coronavirus infectious bronchitis virus nucleoprotein localizes to ' 'the nucleolus', 'volume': '75', 'author': 'Hiscox JA', 'year': '2001', 'unstructured': 'Hiscox JA, Wurm T, Wilson L, Britton P, Cavanagh D, Brooks G. The ' 'coronavirus infectious bronchitis virus nucleoprotein localizes to the ' 'nucleolus. J Virol. 2001, 75:506-512. 10.1128/jvi.75.1.506-512.2001', 'journal-title': 'J Virol'}, { 'key': 'ref20', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2015.00553\xa0', 'article-title': 'Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA ' 'viruses', 'volume': '6', 'author': 'Wulan WN', 'year': '2015', 'unstructured': 'Wulan WN, Heydet D, Walker EJ, Gahan ME, Ghildyal R. Nucleocytoplasmic ' 'transport of nucleocapsid proteins of enveloped RNA viruses. Front ' 'Microbiol. 2015, 6:553. 10.3389/fmicb.2015.00553\xa0', 'journal-title': 'Front Microbiol'}, { 'key': 'ref21', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2020.104787', 'article-title': 'The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 ' 'in vitro', 'volume': '178', 'author': 'Caly L', 'year': '2020', 'unstructured': 'Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ' 'ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral ' 'Res. 2020, 178:104787. 10.1016/j.antiviral.2020.104787', 'journal-title': 'Antiviral Res'}, { 'key': 'ref22', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/cpt.1889', 'article-title': 'The approved dose of ivermectin alone is not the ideal dose for the ' 'treatment of COVID‐19', 'volume': '{Epub ahead of print}', 'author': 'Schmith VD', 'year': '2020', 'unstructured': 'Schmith VD, Zhou JJ, Lohmer LRL. The approved dose of ivermectin alone ' 'is not the ideal dose for the treatment of COVID‐19. Clin Pharmacol ' 'Ther. 2020, {Epub ahead of print}:10.1002/cpt.1889. 10.1002/cpt.1889', 'journal-title': 'Clin Pharmacol Ther'}, { 'key': 'ref23', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/2020.06.06.20124461', 'article-title': 'ICON (Ivermectin in COvid Nineteen) study: use of ivermectin is ' 'associated with lower mortality in hospitalized patients with COVID19 ' '[PREPRINT]', 'author': 'Rajter JC', 'year': '2020', 'unstructured': 'Rajter JC, Sherman M, Fatteh N, Vogel F, Sacks J, Rajter JJ. ICON ' '(Ivermectin in COvid Nineteen) study: use of ivermectin is associated ' 'with lower mortality in hospitalized patients with COVID19 [PREPRINT]. ' 'medRxiv. 2020, 2020.06.06.20124461. 10.1101/2020.06.06.20124461', 'journal-title': 'medRxiv'}, { 'key': 'ref24', 'doi-asserted-by': 'publisher', 'DOI': '10.1183/1393003.congress-2017.PA4125', 'article-title': 'PA4125: Dry powder inhaled ribavirin in healthy volunteers: safety, ' 'tolerability, lung and systemic pharmacokinetics', 'volume': '50', 'author': 'Billiard J', 'year': '2017', 'unstructured': 'Billiard J, Baker S, Chandrasekaran V, van den Berg F, Yang S, Dumont E. ' 'PA4125: Dry powder inhaled ribavirin in healthy volunteers: safety, ' 'tolerability, lung and systemic pharmacokinetics. Eur Respir J. 2017, ' '50:4125. 10.1183/1393003.congress-2017.PA4125', 'journal-title': 'Eur Respir J'}, { 'key': 'ref25', 'doi-asserted-by': 'publisher', 'DOI': '10.1086/315392', 'article-title': 'Rapid antiviral effect of inhaled zanamivir in the treatment of ' 'naturally occurring influenza in otherwise healthy adults', 'volume': '181', 'author': 'Boivin G', 'year': '2000', 'unstructured': 'Boivin G, Goyette N, Hardy I, Aoki F, Wagner A, Trottier S. Rapid ' 'antiviral effect of inhaled zanamivir in the treatment of naturally ' 'occurring influenza in otherwise healthy adults. J Infect Dis. 2000, ' '181:1471-1474. 10.1086/315392', 'journal-title': 'J Infect Dis'}, { 'key': 'ref26', 'doi-asserted-by': 'publisher', 'DOI': '10.1155/2018/2732017', 'article-title': 'Inhaled therapy in respiratory disease: the complex interplay of ' 'pulmonary kinetic processes', 'volume': '2018', 'author': 'Borghardt JM', 'year': '2018', 'unstructured': 'Borghardt JM, Kloft C, Sharma A. Inhaled therapy in respiratory disease: ' 'the complex interplay of pulmonary kinetic processes. Can Respir J. ' '2018, 2018:2732017. 10.1155/2018/2732017', 'journal-title': 'Can Respir J'}, { 'key': 'ref27', 'article-title': 'Determination of ivermectin in human plasma by high-performance liquid ' 'chromatography', 'volume': '43', 'author': 'Krishna DR', 'year': '1993', 'unstructured': 'Krishna DR, Klotz U. Determination of ivermectin in human plasma by ' 'high-performance liquid chromatography. Arzneimittelforschung. 1993, ' '43:609-611.', 'journal-title': 'Arzneimittelforschung'}, { 'key': 'ref28', 'article-title': 'Study on the subacute inhalation toxicity of ivermectin TC in rats', 'volume': '26', 'author': 'Ji L', 'year': '2016', 'unstructured': 'Ji L, Cen J, Lin S, Hu C, Fang H, Xu J, Chen J. Study on the subacute ' 'inhalation toxicity of ivermectin TC in rats. Chinese J Comp Med. 2016, ' '26:70-74.', 'journal-title': 'Chinese J Comp Med'}], 'container-title': 'Cureus', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.cureus.com/articles/37039-ivermectin-a-closer-look-at-a-potential-remedy', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2020, 9, 11]], 'date-time': '2020-09-11T15:05:06Z', 'timestamp': 1599836706000}, 'score': 1, 'resource': { 'primary': { 'URL': 'https://www.cureus.com/articles/37039-ivermectin-a-closer-look-at-a-potential-remedy'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2020, 9, 11]]}, 'references-count': 28, 'URL': 'http://dx.doi.org/10.7759/cureus.10378', 'relation': {}, 'ISSN': ['2168-8184'], 'subject': ['Aerospace Engineering'], 'published': {'date-parts': [[2020, 9, 11]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit