Inhaled Dry Powder of Antiviral Agents: A Promising Approach to Treating Respiratory Viral Pathogens
Tushar Saha, Zia Uddin Masum, Anik Biswas, Moushumi Afroza Mou, Sohag Ahmed, Tamal Saha
Viruses, doi:10.3390/v17020252
Inhaled dry powder formulations of antiviral agents represent a novel and potentially transformative approach to managing respiratory viral infections. Traditional antiviral therapies in the form of tablets or capsules often face limitations in terms of therapeutic activity, systemic side effects, and delayed onset of action. Dry powder inhalers (DPIs) provide a targeted delivery system, ensuring the direct administration of antivirals to the infection site, the respiratory tract, which potentially enhance therapeutic efficacy and minimize systemic exposure. This review explores the current state of inhaled dry powder antiviral agents, their advantages over traditional routes, and specific formulations under development. We discuss the benefits of targeted delivery, such as improved drug deposition in the lungs and reduced side effects, alongside considerations related to the formulation preparation. In addition, we summarize the developed (published and marketed) inhaled dry powders of antiviral agents.
Author Contributions: Conceptualization, methodology, data curation, and writing-original draft preparation-T.S. (Tushar Saha). Writing-original draft preparation and review and editing-Z.U.M. Writing-original draft preparation and review and editing-A.B. Writing-original draft preparation and review and editing-M.A.M. Writing-original draft preparation and review and editing-S.A. Review and editing-T.S. (Tamal Saha). All authors have read and agreed to the published version of the manuscript.
Conflicts of Interest: Author Tushar Saha was employed by the company Mastaplex Ltd., The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References
Abiona, Wyatt, Koner, Mohammed, The Optimisation of Carrier Selection in Dry Powder Inhaler Formulation and the Role of Surface Energetics, Biomedicines,
doi:10.3390/biomedicines10112707
Adhikari, Dummer, Gordon, Das, An expert opinion on respiratory delivery of high-dose powders for lung infections, Expert Opin. Drug Deliv,
doi:10.1080/17425247.2022.2089111
Ari, Practical strategies for a safe and effective delivery of aerosolized medications to patients with COVID-19, Respir. Med,
doi:10.1016/j.rmed.2020.105987
Aziz, Scherlieβ, Steckel, Development of high dose oseltamivir phosphate dry powder for inhalation therapy in viral pneumonia, Pharmaceutics,
doi:10.3390/pharmaceutics12121154
Babawale, Guerrero-Plata, Respiratory Viral Coinfections: Insights into Epidemiology, Immune Response, Pathology, and Clinical Outcomes, Pathogens,
doi:10.3390/pathogens13040316
Baloch, Baloch, Zheng, Pei, The coronavirus disease 2019 (COVID-19) pandemic, Tohoku J. Exp. Med,
doi:10.1620/tjem.250.271
Belardo, Cenciarelli, La Frazia, Rossignol, Santoro, Synergistic Effect of Nitazoxanide with Neuraminidase Inhibitors against Influenza A Viruses in Vitro, Antimicrob. Agents Chemother,
doi:10.1128/AAC.03947-14
Bizot, Bousquet, Charpié, Coquelin, Lefevre et al., Rhinovirus: A narrative review on its genetic characteristics, pediatric clinical presentations, and pathogenesis, Front. Pediatr,
doi:10.3389/fped.2021.643219
Bobrowski, Chen, Eastman, Itkin, Shinn et al., Synergistic and Antagonistic Drug Combinations against SARS-CoV-2, Mol. Ther,
doi:10.1016/j.ymthe.2020.12.016
Borghardt, Kloft, Sharma, Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes, Can. Respir. J,
doi:10.1155/2018/2732017
Bountouri, Ntafis, Fragkiadaki, Kanellos, Xylouri, Phylogenetic analysis of the five internal genes and evolutionary pathways of the Greek H3N8 equine influenza virus, Nat. Sci,
doi:10.4236/ns.2012.411112
Brahim, Verma, Garcia-Contreras, Inhalation drug delivery devices: Technology update, Med. Devices (Auckl)
Caballero, Bianchi, Nuño, Ferretti, Polack et al., Mortality associated with acute respiratory infections among children at home, J. Infect. Dis,
doi:10.1093/infdis/jiy517
Carstens, Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses, Arch. Virol,
doi:10.1007/s00705-009-0547-x
Chen, Fei, Chen, Sargsyan, Chang et al., Synergistic Inhibition of SARS-CoV-2 Replication Using Disulfiram/Ebselen and Remdesivir, ACS Pharmacol. Transl. Sci,
doi:10.1021/acsptsci.1c00022
Chung, Chow, Wilcox, Burstein, Brandstetter et al., Comparison of symptoms and RNA levels in children and adults with SARS-CoV-2 infection in the community setting, JAMA Pediatr,
doi:10.1001/jamapediatrics.2021.2025
Cortese, Lee, Cerikan, Neufeldt, Oorschot et al., Integrative imaging reveals SARS-CoV-2-induced reshaping of subcellular morphologies, Cell Host Microbe,
doi:10.1016/j.chom.2020.11.003
De Mello, Drusano, Adams, Shudt, Kulawy et al., Oseltamivir-Zanamivir Combination Therapy Suppresses Drug-Resistant H1N1 Influenza A Viruses in the Hollow Fiber Infection Model (HFIM) System, Eur. J. Pharm. Sci,
doi:10.1016/j.ejps.2017.10.027
Dhoble, Kapse, Ghegade, Chogale, Ghodake et al., development, and technical considerations for dry powder inhaler devices, Drug Discov. Today,
doi:10.1016/j.drudis.2024.103954
Dybul, Fauci, Bartlett, Kaplan, Pau, Guidelines for Using Antiretroviral Agents among HIV-Infected Adults and Adolescents, MMWR Recomm. Rep
Eedara, Alabsi, Encinas-Basurto, Polt, Ledford et al., Inhalation delivery for the treatment and prevention of COVID-19 infection, Pharmaceutics,
doi:10.3390/pharmaceutics13071077
Esneau, Bartlett, Bochkov, Rhinovirus structure, replication, and classification
Feikin, Higdon, Abu-Raddad, Andrews, Araos et al., Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: Results of a systematic review and meta-regression, Lancet,
doi:10.1016/S0140-6736(22)00152-0
Feng, Ye, Li, Zhang, Wang et al., Recent Advances in Neuraminidase Inhibitor Development as Anti-influenza Drugs, ChemMedChem,
doi:10.1002/cmdc.201200155
Fleischli, Sirena, Lesage, Havenga, Cattaneo, Species B adenovirus serotypes 3, 7, 11 and 35 share similar binding sites on the membrane cofactor protein CD46 receptor, J. Gen. Virol,
doi:10.1099/vir.0.83142-0
Gaikwad, Pathare, More, Waykhinde, Laddha et al., Dry powder inhaler with the technical and practical obstacles, and forthcoming platform strategies, J. Control Release,
doi:10.1016/j.jconrel.2023.01.083
Galabov, Simeonova, Gegova, Rimantadine and Oseltamivir Demonstrate Synergistic Combination Effect in an Experimental Infection with Type A (H3N2) Influenza Virus in Mice, Antivir. Chem. Chemother,
doi:10.1177/095632020601700502
Ganjian, Zietz, Mechtcheriakova, Blaas, Fuchs, ICAM-1 binding rhinoviruses enter HeLa cells via multiple pathways and travel to distinct intracellular compartments for uncoating, Viruses,
doi:10.3390/v9040068
Gao, Cao, Xing, Altmeyer, Zhang, Evaluation of small molecule combinations against respiratory syncytial virus in vitro, Molecules,
doi:10.3390/molecules26092607
Gardner, Mcquillin, Rapid Virus Diagnosis: Application Of immunofluorescence
Ghosh, Dellibovi-Ragheb, Kerviel, Pak, Qiu et al., β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway, Cell,
doi:10.1016/j.cell.2020.10.039
Gorbalenya, Baker, Baric, De Groot, Drosten et al., The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2, Nat. Microbiol
Grant, Geoghegan, Arbyn, Mohammed, Mcguinness et al., The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis of 148 studies from 9 countries, PLoS ONE,
doi:10.1371/journal.pone.0234765
Hassan, Lau, Effect of particle shape on dry particle inhalation: Study of flowability, aerosolization, and deposition properties, AAPS PharmSciTech,
doi:10.1208/s12249-009-9313-3
Hempel, Elez, Krüger, Raich, Shrimp et al., Synergistic inhibition of SARS-CoV-2 cell entry by otamixaban and covalent protease inhibitors: Pre-clinical assessment of pharmacological and molecular properties, Chem. Sci,
doi:10.1039/D1SC01494C
Heyder, Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery, Proc. Am. Thorac. Soc,
doi:10.1513/pats.200409-046TA
Hua, Dai, Xu, Xing, Liu et al., Drug repositioning: Progress and challenges in drug discovery for various diseases, Eur. J. Med. Chem,
doi:10.1016/j.ejmech.2022.114239
Hung, Wang, Shih, Teng, Tseng et al., Synergistic inhibition of enterovirus 71 replication by interferon and rupintrivir, J. Infect. Dis,
doi:10.1093/infdis/jir174
Ianevski, Zusinaite, Tenson, Oksenych, Wang et al., Novel synergistic antienteroviral drug combinations, Viruses,
doi:10.3390/v14091866
Jha, Jarvis, Fraser, Openshaw, Respiratory syncytial virus. SARS MERS Other Viral Lung Infect
Jitobaom, Boonarkart, Manopwisedjaroen, Punyadee, Borwornpinyo et al., Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations, BMC Pharmacol. Toxicol,
doi:10.1186/s40360-022-00580-8
Kang, Kim, Kim, Song, Choi et al., Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses, Antivir. Res
Karen, Hearing, Adenovirus core protein VII protects the viral genome from a DNA damage response at early times after infection, J. Virol,
doi:10.1128/JVI.02540-10
Laborda, Wang, Voglmeir, Influenza neuraminidase inhibitors: Synthetic approaches, derivatives and biological activity, Molecules,
doi:10.3390/molecules21111513
Lasswitz, Chandra, Arnberg, Gerold, Glycomics and proteomics approaches to investigate early adenovirus-host cell interactions, J. Mol. Biol,
doi:10.1016/j.jmb.2018.04.039
Ledford, Patel, Demenczuk, Watanyar, Herbertz et al., 1 sequencing of all human rhinovirus serotypes: Insights into genus phylogeny and susceptibility to antiviral capsid-binding compounds, J. Virol,
doi:10.1128/JVI.78.7.3663-3674.2004
Lehár, Krueger, Avery, Heilbut, Johansen et al., Synergistic Drug Combinations Tend to Improve Therapeutically Relevant Selectivity, Nat. Biotechnol,
doi:10.1038/nbt.1549
Leung, Parumasivam, Tang, Chan, A proof-of-principle setup for delivery of Relenza® (Zanamivir) inhalation powder to intubated patients, J. Aerosol Med. Pulm. Drug Deliv,
doi:10.1089/jamp.2014.1179
Li, Wang, Blau, Caballero, Feikin et al., regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: A systematic analysis, Lancet,
doi:10.1016/S0140-6736(22)00478-0
Maa, Prestrelski, Biopharmaceutical Powders Particle Formation and Formulation Considerations, Curr. Pharm. Biotechnol,
doi:10.2174/1389201003378898
Martinez, Papich, Drusano, Dosing regimen matters: The importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target, Antimicrob. Agents Chemother,
doi:10.1128/AAC.05360-11
Mehta, Dry Powder Inhalers: A Focus on Advancements in Novel Drug Delivery Systems, J. Drug Deliv,
doi:10.1155/2016/8290963
Mitra, Baviskar, Duncan-Decocq, Patel, Oomens, The human respiratory syncytial virus matrix protein is required for maturation of viral filaments, J. Virol,
doi:10.1128/JVI.06744-11
Molimard, Raherison, Lignot, Depont, Abouelfath et al., Assessment of handling of inhaler devices in real life: An observational study in 3811 patients in primary care, J. Aerosol Med,
doi:10.1089/089426803769017613
Muralidharan, Hayes, Jr, Mansour, Dry powder inhalers in COPD, lung inflammation and pulmonary infections, Expert Opin. Drug Deliv,
doi:10.1517/17425247.2015.977783
Nainwal, Treatment of respiratory viral infections through inhalation therapeutics: Challenges and opportunities, Pulm. Pharmacol. Ther,
doi:10.1016/j.pupt.2022.102170
Nasserie, Hittle, Goodman, Assessment of the frequency and variety of persistent symptoms among patients with COVID-19: A systematic review, JAMA Netw. Open,
doi:10.1001/jamanetworkopen.2021.11417
Ohashi, Watashi, Saso, Shionoya, Iwanami et al., Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment, iScience,
doi:10.1016/j.isci.2021.102367
Ong, Migliori, Raviglione, Macgregor-Skinner, Sotgiu et al., Epidemic and pandemic viral infections: Impact on tuberculosis and the lung: A consensus by the World Association for Infectious Diseases and Immunological Disorders (WAidid), Global Tuberculosis Network (GTN), and members of the European Society of Clinical Microbiology and Infectious Diseases Study Group for Mycobacterial Infections (ESGMYC), Eur. Respir. J
Panozzo, Oh, Margo, Morton, Piedrafita et al., Evaluation of a dry powder delivery system for laninamivir in a ferret model of influenza infection, Antivir. Res,
doi:10.1016/j.antiviral.2015.05.007
Pardeshi, Kole, Kapare, Chandankar, Shinde et al., Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations, Pharmaceutics,
doi:10.3390/pharmaceutics14122632
Patel, Patel, Chakraborty, Shukla, Revealing facts behind spray dried solid dispersion technology used for solubility enhancement, Saudi Pharm. J,
doi:10.1016/j.jsps.2013.12.013
Poduri, Joshi, Jagadeesh, Drugs Targeting Various Stages of the SARS-CoV-2 Life Cycle: Exploring Promising Drugs for the Treatment of COVID-19, Cell Signal,
doi:10.1016/j.cellsig.2020.109721
Pourrazavi, Fathifar, Sharma, Allahverdipour, COVID-19 vaccine hesitancy: A systematic review of cognitive determinants, Health Promot. Perspect,
doi:10.34172/hpp.2023.03
Saha, Sinha, Harfoot, Quiñones-Mateu, Das, Inhalable dry powder containing remdesivir and disulfiram: Preparation and in vitro characterization, Int. J. Pharm,
doi:10.1016/j.ijpharm.2023.123411
Saha, Sinha, Harfoot, Quiñones-Mateu, Das, Manipulation of spray-drying conditions to develop an inhalable ivermectin dry powder, Pharmaceutics,
doi:10.3390/pharmaceutics14071432
Sahakijpijarn, Moon, Koleng, Christensen, Williams et al., Development of Remdesivir as a Dry Powder for Inhalation by Thin Film Freezing, Pharmaceutics,
doi:10.3390/pharmaceutics12111002
Savic, Penders, Shi, Branche, Pirçon, Respiratory syncytial virus disease burden in adults aged 60 years and older in high-income countries: A systematic literature review and meta-analysis, Influenza Other Respir. Viruses,
doi:10.1111/irv.13031
Scherer, Mascheroni, Carnell, Wunderlich, Makarchuk et al., SARS-CoV-2 nucleocapsid protein adheres to replication organelles before viral assembly at the Golgi/ERGIC and lysosome-mediated egress, Sci. Adv,
doi:10.1126/sciadv.abl4895
Schultz, Johnson, Ayyanathan, Miller, Whig et al., Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2, Nature,
doi:10.1038/s41586-022-04482-x
Seow, Liao, Lau, Leung, Yuan et al., Dual targeting powder formulation of antiviral agent for customizable nasal and lung deposition profile through single intranasal administration, Int. J. Pharm,
doi:10.1016/j.ijpharm.2022.121704
Sleeman, Mishin, Deyde, Furuta, Klimov et al., In Vitro Antiviral Activity of Favipiravir (T-705) against Drug-Resistant Influenza and 2009 A (H1N1) Viruses, Antimicrob. Agents Chemother,
doi:10.1128/AAC.01739-09
Snijder, Van Der Meer, Zevenhoven-Dobbe, Onderwater, Van Der Meulen et al., Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex, J. Virol,
doi:10.1128/JVI.02501-05
Song, Lu, Chang, Ji, Lin et al., Natural binary herbal small molecules self-assembled nanogel for synergistic inhibition of respiratory syncytial virus, ACS Biomater. Sci. Eng,
doi:10.1021/acsbiomaterials.4c01227
Tan, Tan, Chu, Chow, Combination Treatment with Remdesivir and Ivermectin Exerts Highly Synergistic and Potent Antiviral Activity against Murine Coronavirus Infection, Front. Cell. Infect. Microbiol,
doi:10.3389/fcimb.2021.700502
Tian, Zhong, Li, Ma, Organocatalytic and Scalable Synthesis of the Anti-Influenza Drugs Zanamivir, Laninamivir, and CS-8958, Angew. Chem. Int. Ed,
doi:10.1002/anie.201408138
Trotman, Mosberger, Fornerod, Stidwill, Greber, Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1, Nat. Cell Biol
Van Den Dool, Hak, Wallinga, Van Loon, Lammers et al., Symptoms of influenza virus infection in hospitalized patients, Infect. Control Hosp. Epidemiol,
doi:10.1086/529211
Vermillion, Murakami, Ma, Pitts, Tomkinson et al., Inhaled remdesivir reduces viral burden in a nonhuman primate model of SARS-CoV-2 infection, Sci. Transl. Med,
doi:10.1126/scitranslmed.abl8282
Volonaki, Psarras, Xepapadaki, Psomali, Gourgiotis et al., Synergistic effects of fluticasone propionate and salmeterol on inhibiting rhinovirus-induced epithelial production of remodelling-associated growth factors, Clin. Exp. Allergy,
doi:10.1111/j.1365-2222.2006.02566.x
Wagoner, Herring, Hsiang, Ianevski, Biering et al., Combinations of Host-and Virus-Targeting Antiviral Drugs Confer Synergistic Suppression of SARS-CoV-2, Microbiol. Spectr,
doi:10.1128/spectrum.03331-22
Wang, Li, Yuan, Gao, Lan et al., In vitro assessment of combinations of enterovirus inhibitors against enterovirus 71, Antimicrob. Agents Chemother,
doi:10.1128/AAC.01073-16
White, Schiffer, Bender Ignacio, Xu, Kainov et al., Drug Combinations as a First Line of Defense against Coronaviruses and Other Emerging Viruses, mBio,
doi:10.1128/mbio.03347-21
Wong, Weng, Ip, Chen, Lakerveld et al., Rational development of a carrier-free dry powder inhalation formulation for respiratory viral infections via quality by design: A drug-drug cocrystal of favipiravir and theophylline, Pharmaceutics,
doi:10.3390/pharmaceutics14020300
Young, Price, Tobyn, Buttrum, Dey, Effect of humidity on aerosolization of micronized drugs, Drug Dev. Ind. Pharm,
doi:10.1081/DDC-120025453
Zhang, Yan, Lu, Qiu, Chen et al., Spray freeze dried niclosamide nanocrystals embedded dry powder for high dose pulmonary delivery, Powder Technol,
doi:10.1016/j.powtec.2022.118168
DOI record:
{
"DOI": "10.3390/v17020252",
"ISSN": [
"1999-4915"
],
"URL": "http://dx.doi.org/10.3390/v17020252",
"abstract": "<jats:p>Inhaled dry powder formulations of antiviral agents represent a novel and potentially transformative approach to managing respiratory viral infections. Traditional antiviral therapies in the form of tablets or capsules often face limitations in terms of therapeutic activity, systemic side effects, and delayed onset of action. Dry powder inhalers (DPIs) provide a targeted delivery system, ensuring the direct administration of antivirals to the infection site, the respiratory tract, which potentially enhance therapeutic efficacy and minimize systemic exposure. This review explores the current state of inhaled dry powder antiviral agents, their advantages over traditional routes, and specific formulations under development. We discuss the benefits of targeted delivery, such as improved drug deposition in the lungs and reduced side effects, alongside considerations related to the formulation preparation. In addition, we summarize the developed (published and marketed) inhaled dry powders of antiviral agents.</jats:p>",
"alternative-id": [
"v17020252"
],
"author": [
{
"affiliation": [
{
"name": "Mastaplex Ltd., Centre for Innovation, University of Otago, Dunedin 9016, New Zealand"
}
],
"family": "Saha",
"given": "Tushar",
"sequence": "first"
},
{
"affiliation": [
{
"name": "College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA"
}
],
"family": "Masum",
"given": "Zia Uddin",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Materials and Nanotechnology, North Dakota State University, Fargo, ND 58105, USA"
}
],
"family": "Biswas",
"given": "Anik",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Biological Science, St. John’s University, Queens, New York, NY 11439, USA"
}
],
"family": "Mou",
"given": "Moushumi Afroza",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA"
}
],
"family": "Ahmed",
"given": "Sohag",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "International Centre for Diarrheal Disease Research, Bangladesh, Dhaka 1212, Bangladesh"
}
],
"family": "Saha",
"given": "Tamal",
"sequence": "additional"
}
],
"container-title": "Viruses",
"container-title-short": "Viruses",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2025,
2,
12
]
],
"date-time": "2025-02-12T15:25:57Z",
"timestamp": 1739373957000
},
"deposited": {
"date-parts": [
[
2025,
2,
14
]
],
"date-time": "2025-02-14T05:11:37Z",
"timestamp": 1739509897000
},
"indexed": {
"date-parts": [
[
2025,
2,
15
]
],
"date-time": "2025-02-15T05:06:03Z",
"timestamp": 1739595963966,
"version": "3.37.1"
},
"is-referenced-by-count": 0,
"issue": "2",
"issued": {
"date-parts": [
[
2025,
2,
12
]
]
},
"journal-issue": {
"issue": "2",
"published-online": {
"date-parts": [
[
2025,
2
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2025,
2,
12
]
],
"date-time": "2025-02-12T00:00:00Z",
"timestamp": 1739318400000
}
}
],
"link": [
{
"URL": "https://www.mdpi.com/1999-4915/17/2/252/pdf",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1968",
"original-title": [],
"page": "252",
"prefix": "10.3390",
"published": {
"date-parts": [
[
2025,
2,
12
]
]
},
"published-online": {
"date-parts": [
[
2025,
2,
12
]
]
},
"publisher": "MDPI AG",
"reference": [
{
"DOI": "10.1183/13993003.01727-2020",
"article-title": "Epidemic and pandemic viral infections: Impact on tuberculosis and the lung: A consensus by the World Association for Infectious Diseases and Immunological Disorders (WAidid), Global Tuberculosis Network (GTN), and members of the European Society of Clinical Microbiology and Infectious Diseases Study Group for Mycobacterial Infections (ESGMYC)",
"author": "Ong",
"doi-asserted-by": "crossref",
"first-page": "2001727",
"journal-title": "Eur. Respir. J.",
"key": "ref_1",
"volume": "56",
"year": "2020"
},
{
"DOI": "10.1093/infdis/jiy517",
"article-title": "Mortality associated with acute respiratory infections among children at home",
"author": "Caballero",
"doi-asserted-by": "crossref",
"first-page": "358",
"journal-title": "J. Infect. Dis.",
"key": "ref_2",
"volume": "219",
"year": "2019"
},
{
"DOI": "10.7774/cevr.2015.4.1.46",
"article-title": "Clinical vaccine development",
"author": "Han",
"doi-asserted-by": "crossref",
"first-page": "46",
"journal-title": "Clin. Exp. Vaccine Res.",
"key": "ref_3",
"volume": "4",
"year": "2015"
},
{
"DOI": "10.1016/j.drudis.2021.05.008",
"article-title": "Drug combination therapy for emerging viral diseases",
"author": "Shyr",
"doi-asserted-by": "crossref",
"first-page": "2367",
"journal-title": "Drug Discov. Today",
"key": "ref_4",
"volume": "26",
"year": "2021"
},
{
"DOI": "10.1016/S0140-6736(22)00152-0",
"article-title": "Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: Results of a systematic review and meta-regression",
"author": "Feikin",
"doi-asserted-by": "crossref",
"first-page": "924",
"journal-title": "Lancet",
"key": "ref_5",
"volume": "399",
"year": "2022"
},
{
"DOI": "10.1016/S2666-5247(21)00069-0",
"article-title": "COVID-19 vaccine efficacy and effectiveness-the elephant (not) in the room",
"author": "Olliaro",
"doi-asserted-by": "crossref",
"first-page": "e279",
"journal-title": "Lancet Microbe",
"key": "ref_6",
"volume": "2",
"year": "2021"
},
{
"DOI": "10.3390/vaccines10101595",
"doi-asserted-by": "crossref",
"key": "ref_7",
"unstructured": "Nuwarda, R.F., Ramzan, I., Weekes, L., and Kayser, V. (2022). Vaccine hesitancy: Contemporary issues and historical background. Vaccines, 10."
},
{
"DOI": "10.34172/hpp.2023.03",
"article-title": "COVID-19 vaccine hesitancy: A systematic review of cognitive determinants",
"author": "Pourrazavi",
"doi-asserted-by": "crossref",
"first-page": "21",
"journal-title": "Health Promot. Perspect.",
"key": "ref_8",
"volume": "13",
"year": "2023"
},
{
"DOI": "10.1016/j.ijpharm.2022.122042",
"article-title": "Inhaled therapy for COVID-19: Considerations of drugs, formulations and devices",
"author": "Saha",
"doi-asserted-by": "crossref",
"first-page": "122042",
"journal-title": "Int. J. Pharm.",
"key": "ref_9",
"volume": "624",
"year": "2022"
},
{
"DOI": "10.1128/AAC.05360-11",
"article-title": "Dosing regimen matters: The importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target",
"author": "Martinez",
"doi-asserted-by": "crossref",
"first-page": "2795",
"journal-title": "Antimicrob. Agents Chemother.",
"key": "ref_10",
"volume": "56",
"year": "2012"
},
{
"DOI": "10.3390/pharmaceutics13071077",
"doi-asserted-by": "crossref",
"key": "ref_11",
"unstructured": "Eedara, B.B., Alabsi, W., Encinas-Basurto, D., Polt, R., Ledford, J.G., and Mansour, H.M. (2021). Inhalation delivery for the treatment and prevention of COVID-19 infection. Pharmaceutics, 13."
},
{
"article-title": "Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes",
"author": "Borghardt",
"first-page": "2732017",
"journal-title": "Can. Respir. J.",
"key": "ref_12",
"volume": "2018",
"year": "2018"
},
{
"DOI": "10.1126/scitranslmed.abl8282",
"article-title": "Inhaled remdesivir reduces viral burden in a nonhuman primate model of SARS-CoV-2 infection",
"author": "Vermillion",
"doi-asserted-by": "crossref",
"first-page": "eabl8282",
"journal-title": "Sci. Transl. Med.",
"key": "ref_13",
"volume": "14",
"year": "2022"
},
{
"article-title": "Inhalation drug delivery devices: Technology update",
"author": "Brahim",
"first-page": "131",
"journal-title": "Med. Devices (Auckl)",
"key": "ref_14",
"volume": "8",
"year": "2015"
},
{
"DOI": "10.4155/tde.13.18",
"article-title": "Prospects and challenges: Inhalation delivery systems",
"author": "Niven",
"doi-asserted-by": "crossref",
"first-page": "519",
"journal-title": "Ther. Deliv.",
"key": "ref_15",
"volume": "4",
"year": "2013"
},
{
"DOI": "10.1016/j.pupt.2022.102170",
"article-title": "Treatment of respiratory viral infections through inhalation therapeutics: Challenges and opportunities",
"author": "Nainwal",
"doi-asserted-by": "crossref",
"first-page": "102170",
"journal-title": "Pulm. Pharmacol. Ther.",
"key": "ref_16",
"volume": "77",
"year": "2022"
},
{
"DOI": "10.1080/17425247.2022.2089111",
"article-title": "An expert opinion on respiratory delivery of high-dose powders for lung infections",
"author": "Adhikari",
"doi-asserted-by": "crossref",
"first-page": "795",
"journal-title": "Expert Opin. Drug Deliv.",
"key": "ref_17",
"volume": "19",
"year": "2022"
},
{
"DOI": "10.1016/j.ijpharm.2018.07.008",
"article-title": "Challenges for pulmonary delivery of high powder doses",
"author": "Sibum",
"doi-asserted-by": "crossref",
"first-page": "325",
"journal-title": "Int. J. Pharm.",
"key": "ref_18",
"volume": "548",
"year": "2018"
},
{
"DOI": "10.1016/j.rmed.2020.105987",
"article-title": "Practical strategies for a safe and effective delivery of aerosolized medications to patients with COVID-19",
"author": "Ari",
"doi-asserted-by": "crossref",
"first-page": "105987",
"journal-title": "Respir. Med.",
"key": "ref_19",
"volume": "167",
"year": "2020"
},
{
"article-title": "Phylogenetic analysis of the five internal genes and evolutionary pathways of the Greek H3N8 equine influenza virus",
"author": "Bountouri",
"first-page": "839",
"journal-title": "Nat. Sci.",
"key": "ref_20",
"volume": "4",
"year": "2012"
},
{
"DOI": "10.1016/S1369-5274(02)00346-6",
"article-title": "Influenza virus still surprises",
"author": "Yewdell",
"doi-asserted-by": "crossref",
"first-page": "414",
"journal-title": "Curr. Opin. Microbiol.",
"key": "ref_21",
"volume": "5",
"year": "2002"
},
{
"DOI": "10.1128/jcm.33.5.1180-1184.1995",
"article-title": "Typing and subtyping of influenza viruses in clinical samples by PCR",
"author": "Wright",
"doi-asserted-by": "crossref",
"first-page": "1180",
"journal-title": "J. Clin. Microbiol.",
"key": "ref_22",
"volume": "33",
"year": "1995"
},
{
"DOI": "10.1002/0471142735.im1911s42",
"article-title": "Influenza virus",
"author": "Cottey",
"doi-asserted-by": "crossref",
"first-page": "19.11.1",
"journal-title": "Curr. Protoc. Immunol.",
"key": "ref_23",
"volume": "42",
"year": "2001"
},
{
"DOI": "10.1146/annurev.pathmechdis.3.121806.154316",
"article-title": "The pathology of influenza virus infections",
"author": "Taubenberger",
"doi-asserted-by": "crossref",
"first-page": "499",
"journal-title": "Annu. Rev. Pathol. Mech. Dis.",
"key": "ref_24",
"volume": "3",
"year": "2008"
},
{
"DOI": "10.1086/529211",
"article-title": "Symptoms of influenza virus infection in hospitalized patients",
"author": "Hak",
"doi-asserted-by": "crossref",
"first-page": "314",
"journal-title": "Infect. Control Hosp. Epidemiol.",
"key": "ref_25",
"volume": "29",
"year": "2008"
},
{
"DOI": "10.12968/bjon.2005.14.22.20172",
"article-title": "Influenza: Incidence, symptoms, and treatment",
"author": "Banning",
"doi-asserted-by": "crossref",
"first-page": "1192",
"journal-title": "Br. J. Nurs.",
"key": "ref_26",
"volume": "14",
"year": "2005"
},
{
"DOI": "10.1016/S1473-3099(05)70270-X",
"article-title": "Understanding the symptoms of the common cold and influenza",
"author": "Eccles",
"doi-asserted-by": "crossref",
"first-page": "718",
"journal-title": "Lancet Infect. Dis.",
"key": "ref_27",
"volume": "5",
"year": "2005"
},
{
"DOI": "10.1002/(SICI)1096-9071(199804)54:4<320::AID-JMV13>3.0.CO;2-J",
"article-title": "Detection of respiratory syncytial virus RNA in blood of neonates by polymerase chain reaction",
"author": "Rohwedder",
"doi-asserted-by": "crossref",
"first-page": "320",
"journal-title": "J. Med. Virol.",
"key": "ref_28",
"volume": "54",
"year": "1998"
},
{
"key": "ref_29",
"unstructured": "Gardner, P.S., and McQuillin, J. (2014). Rapid Virus Diagnosis: Application Of immunofluorescence, Butterworth-Heinemann."
},
{
"DOI": "10.1099/0022-1317-69-9-2145",
"article-title": "Respiratory syncytial virus: Heterogeneity of subgroup B strains",
"author": "Norrby",
"doi-asserted-by": "crossref",
"first-page": "2145",
"journal-title": "J. Gen. Virol.",
"key": "ref_30",
"volume": "69",
"year": "1988"
},
{
"DOI": "10.1128/JVI.06744-11",
"article-title": "The human respiratory syncytial virus matrix protein is required for maturation of viral filaments",
"author": "Mitra",
"doi-asserted-by": "crossref",
"first-page": "4432",
"journal-title": "J. Virol.",
"key": "ref_31",
"volume": "86",
"year": "2012"
},
{
"key": "ref_32",
"unstructured": "Jha, A., Jarvis, H., Fraser, C., and Openshaw, P. (2025, January 14). Respiratory syncytial virus. SARS MERS Other Viral Lung Infect, Available online: https://www.ncbi.nlm.nih.gov/books/NBK442240/."
},
{
"DOI": "10.1016/S0140-6736(22)00478-0",
"article-title": "Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: A systematic analysis",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "2047",
"journal-title": "Lancet",
"key": "ref_33",
"volume": "399",
"year": "2022"
},
{
"DOI": "10.1111/irv.13031",
"article-title": "Respiratory syncytial virus disease burden in adults aged 60 years and older in high-income countries: A systematic literature review and meta-analysis",
"author": "Savic",
"doi-asserted-by": "crossref",
"first-page": "e13031",
"journal-title": "Influenza Other Respir. Viruses",
"key": "ref_34",
"volume": "17",
"year": "2023"
},
{
"DOI": "10.1053/j.nainr.2003.12.007",
"article-title": "Respiratory syncytial virus (RSV): Overview, treatment, and prevention strategies",
"author": "Polak",
"doi-asserted-by": "crossref",
"first-page": "15",
"journal-title": "Newborn Infant Nurs. Rev.",
"key": "ref_35",
"volume": "4",
"year": "2004"
},
{
"DOI": "10.2174/187152612800100116",
"article-title": "Respiratory syncytial virus infection in adult populations",
"author": "Walsh",
"doi-asserted-by": "crossref",
"first-page": "98",
"journal-title": "Infect. Disord.-Drug Targets",
"key": "ref_36",
"volume": "12",
"year": "2012"
},
{
"DOI": "10.1016/j.it.2020.10.004",
"article-title": "Mechanisms of SARS-CoV-2 transmission and pathogenesis",
"author": "Harrison",
"doi-asserted-by": "crossref",
"first-page": "1100",
"journal-title": "Trends Immunol.",
"key": "ref_37",
"volume": "41",
"year": "2020"
},
{
"DOI": "10.1620/tjem.250.271",
"article-title": "The coronavirus disease 2019 (COVID-19) pandemic",
"author": "Baloch",
"doi-asserted-by": "crossref",
"first-page": "271",
"journal-title": "Tohoku J. Exp. Med.",
"key": "ref_38",
"volume": "250",
"year": "2020"
},
{
"DOI": "10.1038/s41564-020-0695-z",
"article-title": "The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2",
"author": "Gorbalenya",
"doi-asserted-by": "crossref",
"first-page": "536",
"journal-title": "Nat. Microbiol.",
"key": "ref_39",
"volume": "5",
"year": "2020"
},
{
"DOI": "10.1128/JVI.02501-05",
"article-title": "Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex",
"author": "Snijder",
"doi-asserted-by": "crossref",
"first-page": "5927",
"journal-title": "J. Virol.",
"key": "ref_40",
"volume": "80",
"year": "2006"
},
{
"DOI": "10.1016/j.chom.2020.11.003",
"article-title": "Integrative imaging reveals SARS-CoV-2-induced reshaping of subcellular morphologies",
"author": "Cortese",
"doi-asserted-by": "crossref",
"first-page": "853",
"journal-title": "Cell Host Microbe",
"key": "ref_41",
"volume": "28",
"year": "2020"
},
{
"DOI": "10.1016/j.cell.2020.10.039",
"article-title": "β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway",
"author": "Ghosh",
"doi-asserted-by": "crossref",
"first-page": "1520",
"journal-title": "Cell",
"key": "ref_42",
"volume": "183",
"year": "2020"
},
{
"DOI": "10.1126/sciadv.abl4895",
"article-title": "SARS-CoV-2 nucleocapsid protein adheres to replication organelles before viral assembly at the Golgi/ERGIC and lysosome-mediated egress",
"author": "Scherer",
"doi-asserted-by": "crossref",
"first-page": "eabl4895",
"journal-title": "Sci. Adv.",
"key": "ref_43",
"volume": "8",
"year": "2022"
},
{
"DOI": "10.2139/ssrn.3582819",
"doi-asserted-by": "crossref",
"key": "ref_44",
"unstructured": "Grant, M.C., Geoghegan, L., Arbyn, M., Mohammed, Z., McGuinness, L., Clarke, E.L., and Wade, R.G. (2020). The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis of 148 studies from 9 countries. PLoS ONE, 15."
},
{
"DOI": "10.1001/jamapediatrics.2021.2025",
"article-title": "Comparison of symptoms and RNA levels in children and adults with SARS-CoV-2 infection in the community setting",
"author": "Chung",
"doi-asserted-by": "crossref",
"first-page": "e212025",
"journal-title": "JAMA Pediatr.",
"key": "ref_45",
"volume": "175",
"year": "2021"
},
{
"DOI": "10.1001/jamanetworkopen.2021.11417",
"article-title": "Assessment of the frequency and variety of persistent symptoms among patients with COVID-19: A systematic review",
"author": "Nasserie",
"doi-asserted-by": "crossref",
"first-page": "e2111417",
"journal-title": "JAMA Netw. Open",
"key": "ref_46",
"volume": "4",
"year": "2021"
},
{
"DOI": "10.3390/v15030675",
"doi-asserted-by": "crossref",
"key": "ref_47",
"unstructured": "Scharf, R.E., and Anaya, J.M. (2023). Post-COVID syndrome in adults—An overview. Viruses, 15."
},
{
"DOI": "10.3389/fped.2021.643219",
"doi-asserted-by": "crossref",
"key": "ref_48",
"unstructured": "Bizot, E., Bousquet, A., Charpié, M., Coquelin, F., Lefevre, S., Le Lorier, J., and Basmaci, R. (2021). Rhinovirus: A narrative review on its genetic characteristics, pediatric clinical presentations, and pathogenesis. Front. Pediatr., 9."
},
{
"DOI": "10.1128/CMR.00077-12",
"article-title": "Human Rhinoviruses",
"author": "Jacobs",
"doi-asserted-by": "crossref",
"first-page": "135",
"journal-title": "Clin. Microbiol. Rev.",
"key": "ref_49",
"volume": "26",
"year": "2013"
},
{
"DOI": "10.1007/s00705-009-0547-x",
"article-title": "Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009)",
"author": "Carstens",
"doi-asserted-by": "crossref",
"first-page": "133",
"journal-title": "Arch. Virol.",
"key": "ref_50",
"volume": "155",
"year": "2010"
},
{
"DOI": "10.1128/JVI.78.7.3663-3674.2004",
"article-title": "VP1 sequencing of all human rhinovirus serotypes: Insights into genus phylogeny and susceptibility to antiviral capsid-binding compounds",
"author": "Ledford",
"doi-asserted-by": "crossref",
"first-page": "3663",
"journal-title": "J. Virol.",
"key": "ref_51",
"volume": "78",
"year": "2004"
},
{
"DOI": "10.3390/v9040068",
"doi-asserted-by": "crossref",
"key": "ref_52",
"unstructured": "Ganjian, H., Zietz, C., Mechtcheriakova, D., Blaas, D., and Fuchs, R. (2017). ICAM-1 binding rhinoviruses enter HeLa cells via multiple pathways and travel to distinct intracellular compartments for uncoating. Viruses, 9."
},
{
"DOI": "10.1016/B978-0-12-816417-4.00001-9",
"doi-asserted-by": "crossref",
"key": "ref_53",
"unstructured": "Esneau, C., Bartlett, N., and Bochkov, Y.A. (2019). Rhinovirus structure, replication, and classification. Rhinovirus Infections, Academic Press."
},
{
"DOI": "10.1001/archinte.163.3.278",
"article-title": "Respiratory consequences of rhinovirus infection",
"author": "Greenberg",
"doi-asserted-by": "crossref",
"first-page": "278",
"journal-title": "Arch. Intern. Med.",
"key": "ref_54",
"volume": "163",
"year": "2003"
},
{
"DOI": "10.1016/j.jcv.2008.08.014",
"article-title": "Clinical effects of rhinovirus infections",
"author": "Peltola",
"doi-asserted-by": "crossref",
"first-page": "411",
"journal-title": "J. Clin. Virol.",
"key": "ref_55",
"volume": "43",
"year": "2008"
},
{
"DOI": "10.1055/s-0031-1283287",
"article-title": "Adenovirus",
"author": "Lynch",
"doi-asserted-by": "crossref",
"first-page": "494",
"journal-title": "Semin. Respir. Crit. Care Med.",
"key": "ref_56",
"volume": "32",
"year": "2011"
},
{
"DOI": "10.1002/1873-3468.13849",
"article-title": "Adenoviruses–infection, pathogenesis and therapy",
"author": "Greber",
"doi-asserted-by": "crossref",
"first-page": "1818",
"journal-title": "FEBS Lett.",
"key": "ref_57",
"volume": "594",
"year": "2020"
},
{
"DOI": "10.1016/j.jmb.2018.04.039",
"article-title": "Glycomics and proteomics approaches to investigate early adenovirus–host cell interactions",
"author": "Lasswitz",
"doi-asserted-by": "crossref",
"first-page": "1863",
"journal-title": "J. Mol. Biol.",
"key": "ref_58",
"volume": "430",
"year": "2018"
},
{
"DOI": "10.1099/vir.0.83142-0",
"article-title": "Species B adenovirus serotypes 3, 7, 11 and 35 share similar binding sites on the membrane cofactor protein CD46 receptor",
"author": "Fleischli",
"doi-asserted-by": "crossref",
"first-page": "2925",
"journal-title": "J. Gen. Virol.",
"key": "ref_59",
"volume": "88",
"year": "2007"
},
{
"DOI": "10.1371/journal.ppat.1000808",
"doi-asserted-by": "crossref",
"key": "ref_60",
"unstructured": "Wodrich, H., Henaff, D., Jammart, B., Segura-Morales, C., and Seelmeir, S. (2010). A capsid-encoded PPxY-motif facilitates adenovirus entry. PLoS Pathog., 6."
},
{
"article-title": "Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat",
"author": "Trotman",
"first-page": "1092",
"journal-title": "Cell Biol.",
"key": "ref_61",
"volume": "3",
"year": "2001"
},
{
"DOI": "10.1128/JVI.02540-10",
"article-title": "Adenovirus core protein VII protects the viral genome from a DNA damage response at early times after infection",
"author": "Karen",
"doi-asserted-by": "crossref",
"first-page": "4135",
"journal-title": "J. Virol.",
"key": "ref_62",
"volume": "85",
"year": "2011"
},
{
"DOI": "10.1542/peds.76.3.420",
"article-title": "Adenovirus infections in young children",
"author": "Edwards",
"doi-asserted-by": "crossref",
"first-page": "420",
"journal-title": "Pediatrics",
"key": "ref_63",
"volume": "76",
"year": "1985"
},
{
"DOI": "10.1001/archpedi.1971.02100150055003",
"article-title": "Adenovirus infection in acute hemorrhagic cystitis: A study in 25 children",
"author": "Mufson",
"doi-asserted-by": "crossref",
"first-page": "281",
"journal-title": "Am. J. Dis. Child.",
"key": "ref_64",
"volume": "121",
"year": "1971"
},
{
"DOI": "10.1097/00005072-197301000-00003",
"article-title": "Subacute focal adenovirus encephalitis",
"author": "Chou",
"doi-asserted-by": "crossref",
"first-page": "34",
"journal-title": "J. Neuropathol. Exp. Neurol.",
"key": "ref_65",
"volume": "32",
"year": "1973"
},
{
"DOI": "10.1001/archpedi.1971.02100150108015",
"article-title": "Myocarditis and pneumonitis with type 21 adenovirus infection: Association with fatal myocarditis and pneumonitis",
"author": "Henson",
"doi-asserted-by": "crossref",
"first-page": "334",
"journal-title": "Am. J. Dis. Child.",
"key": "ref_66",
"volume": "121",
"year": "1971"
},
{
"DOI": "10.1016/0002-9343(80)90262-4",
"article-title": "Adenovirus infection in the immunocompromised patient",
"author": "Zahradnik",
"doi-asserted-by": "crossref",
"first-page": "725",
"journal-title": "Am. J. Med.",
"key": "ref_67",
"volume": "68",
"year": "1980"
},
{
"DOI": "10.3390/pharmaceutics13010031",
"doi-asserted-by": "crossref",
"key": "ref_68",
"unstructured": "Chaurasiya, B., and Zhao, Y.Y. (2020). Dry Powder for Pulmonary Delivery: A Comprehensive Review. Pharmaceutics, 13."
},
{
"DOI": "10.3390/biomedicines10112707",
"doi-asserted-by": "crossref",
"key": "ref_69",
"unstructured": "Abiona, O., Wyatt, D., Koner, J., and Mohammed, A. (2022). The Optimisation of Carrier Selection in Dry Powder Inhaler Formulation and the Role of Surface Energetics. Biomedicines, 10."
},
{
"DOI": "10.1007/s11095-006-9174-3",
"article-title": "Particle Engineering for Pulmonary Drug Delivery",
"author": "Chow",
"doi-asserted-by": "crossref",
"first-page": "411",
"journal-title": "Pharm. Res.",
"key": "ref_70",
"volume": "24",
"year": "2007"
},
{
"DOI": "10.1208/s12249-010-9542-5",
"article-title": "Micronization of a Soft Material: Air-Jet and Micro-Ball Milling",
"author": "Saleem",
"doi-asserted-by": "crossref",
"first-page": "1642",
"journal-title": "AAPS PharmSciTech",
"key": "ref_71",
"volume": "11",
"year": "2010"
},
{
"DOI": "10.1080/17425247.2020.1702643",
"article-title": "Physical stability of dry powder inhaler formulations",
"author": "Shetty",
"doi-asserted-by": "crossref",
"first-page": "77",
"journal-title": "Expert Opin. Drug Deliv.",
"key": "ref_72",
"volume": "17",
"year": "2020"
},
{
"DOI": "10.17485/ijst/2009/v2i10.3",
"article-title": "Spray drying technology: An overview",
"author": "Patel",
"doi-asserted-by": "crossref",
"first-page": "44",
"journal-title": "Indian J. Sci. Technol.",
"key": "ref_73",
"volume": "2",
"year": "2009"
},
{
"DOI": "10.1016/j.jsps.2013.12.013",
"article-title": "Revealing facts behind spray dried solid dispersion technology used for solubility enhancement",
"author": "Patel",
"doi-asserted-by": "crossref",
"first-page": "352",
"journal-title": "Saudi Pharm. J.",
"key": "ref_74",
"volume": "23",
"year": "2015"
},
{
"DOI": "10.2174/1389201003378898",
"article-title": "Biopharmaceutical Powders Particle Formation and Formulation Considerations",
"author": "Maa",
"doi-asserted-by": "crossref",
"first-page": "283",
"journal-title": "Curr. Pharm. Biotechnol.",
"key": "ref_75",
"volume": "1",
"year": "2000"
},
{
"DOI": "10.3390/pharmaceutics14122632",
"doi-asserted-by": "crossref",
"key": "ref_76",
"unstructured": "Pardeshi, S.R., Kole, E.B., Kapare, H.S., Chandankar, S.M., Shinde, P.J., Boisa, G.S., Salgaonkar, S.S., Giram, P.S., More, M.P., and Kolimi, P. (2022). Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations. Pharmaceutics, 14."
},
{
"DOI": "10.1016/j.drudis.2024.103954",
"article-title": "Design, development, and technical considerations for dry powder inhaler devices",
"author": "Dhoble",
"doi-asserted-by": "crossref",
"first-page": "103954",
"journal-title": "Drug Discov. Today",
"key": "ref_77",
"volume": "29",
"year": "2024"
},
{
"DOI": "10.1155/2016/8290963",
"article-title": "Dry Powder Inhalers: A Focus on Advancements in Novel Drug Delivery Systems",
"author": "Mehta",
"doi-asserted-by": "crossref",
"first-page": "8290963",
"journal-title": "J. Drug Deliv.",
"key": "ref_78",
"volume": "2016",
"year": "2016"
},
{
"DOI": "10.1513/pats.200409-046TA",
"article-title": "Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery",
"author": "Heyder",
"doi-asserted-by": "crossref",
"first-page": "315",
"journal-title": "Proc. Am. Thorac. Soc.",
"key": "ref_79",
"volume": "1",
"year": "2004"
},
{
"DOI": "10.1126/science.276.5320.1868",
"article-title": "Large porous particles for pulmonary drug delivery",
"author": "Edwards",
"doi-asserted-by": "crossref",
"first-page": "1868",
"journal-title": "Science",
"key": "ref_80",
"volume": "276",
"year": "1997"
},
{
"DOI": "10.1208/s12249-009-9313-3",
"article-title": "Effect of particle shape on dry particle inhalation: Study of flowability, aerosolization, and deposition properties",
"author": "Hassan",
"doi-asserted-by": "crossref",
"first-page": "1252",
"journal-title": "AAPS PharmSciTech",
"key": "ref_81",
"volume": "10",
"year": "2009"
},
{
"DOI": "10.1016/j.ijpharm.2018.08.061",
"article-title": "High dose dry powder inhalers to overcome the challenges of tuberculosis treatment",
"author": "Momin",
"doi-asserted-by": "crossref",
"first-page": "398",
"journal-title": "Int. J. Pharm.",
"key": "ref_82",
"volume": "550",
"year": "2018"
},
{
"DOI": "10.1081/DDC-120025453",
"article-title": "Effect of humidity on aerosolization of micronized drugs",
"author": "Young",
"doi-asserted-by": "crossref",
"first-page": "959",
"journal-title": "Drug Dev. Ind. Pharm.",
"key": "ref_83",
"volume": "29",
"year": "2003"
},
{
"DOI": "10.1007/s11095-007-9475-1",
"article-title": "Pharmaceutical particle engineering via spray drying",
"author": "Vehring",
"doi-asserted-by": "crossref",
"first-page": "999",
"journal-title": "Pharm. Res.",
"key": "ref_84",
"volume": "25",
"year": "2008"
},
{
"DOI": "10.1111/j.1368-504X.2005.00726.x",
"article-title": "Are outcomes the same with all dry powder inhalers?",
"author": "Thomas",
"doi-asserted-by": "crossref",
"first-page": "33",
"journal-title": "Int. J. Clin. Pract. Suppl.",
"key": "ref_85",
"volume": "149",
"year": "2005"
},
{
"DOI": "10.1089/089426803769017613",
"article-title": "Assessment of handling of inhaler devices in real life: An observational study in 3811 patients in primary care",
"author": "Molimard",
"doi-asserted-by": "crossref",
"first-page": "249",
"journal-title": "J. Aerosol Med.",
"key": "ref_86",
"volume": "16",
"year": "2003"
},
{
"DOI": "10.1007/s43440-020-00155-6",
"article-title": "Drug repurposing approach to fight COVID-19",
"author": "Singh",
"doi-asserted-by": "crossref",
"first-page": "1479",
"journal-title": "Pharmacol. Rep.",
"key": "ref_87",
"volume": "72",
"year": "2020"
},
{
"DOI": "10.1016/j.ejmech.2022.114239",
"article-title": "Drug repositioning: Progress and challenges in drug discovery for various diseases",
"author": "Hua",
"doi-asserted-by": "crossref",
"first-page": "114239",
"journal-title": "Eur. J. Med. Chem.",
"key": "ref_88",
"volume": "234",
"year": "2022"
},
{
"DOI": "10.1101/2020.07.26.222109",
"doi-asserted-by": "crossref",
"key": "ref_89",
"unstructured": "Sahakijpijarn, S., Moon, C., Koleng, J.J., Christensen, D.J., and Williams, R.O. (2020). Development of Remdesivir as a Dry Powder for Inhalation by Thin Film Freezing. Pharmaceutics, 12."
},
{
"DOI": "10.1016/j.ijpharm.2023.123411",
"article-title": "Inhalable dry powder containing remdesivir and disulfiram: Preparation and in vitro characterization",
"author": "Saha",
"doi-asserted-by": "crossref",
"first-page": "123411",
"journal-title": "Int. J. Pharm.",
"key": "ref_90",
"volume": "645",
"year": "2023"
},
{
"DOI": "10.3390/pharmaceutics14020300",
"doi-asserted-by": "crossref",
"key": "ref_91",
"unstructured": "Wong, S.N., Weng, J., Ip, I., Chen, R., Lakerveld, R., Telford, R., Blagden, N., Scowen, I.J., and Chow, S.F. (2022). Rational development of a carrier-free dry powder inhalation formulation for respiratory viral infections via quality by design: A drug-drug cocrystal of favipiravir and theophylline. Pharmaceutics, 14."
},
{
"DOI": "10.1016/j.powtec.2022.118168",
"article-title": "Spray freeze dried niclosamide nanocrystals embedded dry powder for high dose pulmonary delivery",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "118168",
"journal-title": "Powder Technol.",
"key": "ref_92",
"volume": "415",
"year": "2023"
},
{
"DOI": "10.3390/pharmaceutics14071432",
"doi-asserted-by": "crossref",
"key": "ref_93",
"unstructured": "Saha, T., Sinha, S., Harfoot, R., Quiñones-Mateu, M.E., and Das, S.C. (2022). Manipulation of spray-drying conditions to develop an inhalable ivermectin dry powder. Pharmaceutics, 14."
},
{
"DOI": "10.1016/j.antiviral.2015.05.007",
"article-title": "Evaluation of a dry powder delivery system for laninamivir in a ferret model of influenza infection",
"author": "Panozzo",
"doi-asserted-by": "crossref",
"first-page": "66",
"journal-title": "Antivir. Res.",
"key": "ref_94",
"volume": "120",
"year": "2015"
},
{
"DOI": "10.3390/pharmaceutics12121154",
"doi-asserted-by": "crossref",
"key": "ref_95",
"unstructured": "Aziz, S., Scherlieβ, R., and Steckel, H. (2020). Development of high dose oseltamivir phosphate dry powder for inhalation therapy in viral pneumonia. Pharmaceutics, 12."
},
{
"DOI": "10.1016/j.ijpharm.2022.121704",
"article-title": "Dual targeting powder formulation of antiviral agent for customizable nasal and lung deposition profile through single intranasal administration",
"author": "Seow",
"doi-asserted-by": "crossref",
"first-page": "121704",
"journal-title": "Int. J. Pharm.",
"key": "ref_96",
"volume": "619",
"year": "2022"
},
{
"DOI": "10.1089/jamp.2014.1179",
"article-title": "A proof-of-principle setup for delivery of Relenza® (Zanamivir) inhalation powder to intubated patients",
"author": "Leung",
"doi-asserted-by": "crossref",
"first-page": "30",
"journal-title": "J. Aerosol Med. Pulm. Drug Deliv.",
"key": "ref_97",
"volume": "30",
"year": "2016"
},
{
"DOI": "10.1016/j.jconrel.2023.01.083",
"article-title": "Dry powder inhaler with the technical and practical obstacles, and forthcoming platform strategies",
"author": "Gaikwad",
"doi-asserted-by": "crossref",
"first-page": "292",
"journal-title": "J. Control Release",
"key": "ref_98",
"volume": "355",
"year": "2023"
},
{
"DOI": "10.1517/17425247.2015.977783",
"article-title": "Dry powder inhalers in COPD, lung inflammation and pulmonary infections",
"author": "Muralidharan",
"doi-asserted-by": "crossref",
"first-page": "947",
"journal-title": "Expert Opin. Drug Deliv.",
"key": "ref_99",
"volume": "12",
"year": "2015"
},
{
"DOI": "10.3390/molecules21111513",
"doi-asserted-by": "crossref",
"key": "ref_100",
"unstructured": "Laborda, P., Wang, S.Y., and Voglmeir, J. (2016). Influenza neuraminidase inhibitors: Synthetic approaches, derivatives and biological activity. Molecules, 21."
},
{
"DOI": "10.1002/cmdc.201200155",
"article-title": "Recent Advances in Neuraminidase Inhibitor Development as Anti-influenza Drugs",
"author": "Feng",
"doi-asserted-by": "crossref",
"first-page": "1527",
"journal-title": "ChemMedChem",
"key": "ref_101",
"volume": "7",
"year": "2012"
},
{
"DOI": "10.1002/anie.201408138",
"article-title": "Organocatalytic and Scalable Synthesis of the Anti-Influenza Drugs Zanamivir, Laninamivir, and CS-8958",
"author": "Tian",
"doi-asserted-by": "crossref",
"first-page": "13885",
"journal-title": "Angew. Chem. Int. Ed.",
"key": "ref_102",
"volume": "53",
"year": "2014"
},
{
"DOI": "10.1128/mbio.03347-21",
"doi-asserted-by": "crossref",
"key": "ref_103",
"unstructured": "White, J.M., Schiffer, J.T., Bender Ignacio, R.A., Xu, S., Kainov, D., Ianevski, A., Aittokallio, T., Frieman, M., Olinger, G.G., and Polyak, S.J. (2021). Drug Combinations as a First Line of Defense against Coronaviruses and Other Emerging Viruses. mBio, 12."
},
{
"DOI": "10.1038/nbt.1549",
"article-title": "Synergistic Drug Combinations Tend to Improve Therapeutically Relevant Selectivity",
"author": "Krueger",
"doi-asserted-by": "crossref",
"first-page": "659",
"journal-title": "Nat. Biotechnol.",
"key": "ref_104",
"volume": "27",
"year": "2009"
},
{
"DOI": "10.1016/j.cellsig.2020.109721",
"article-title": "Drugs Targeting Various Stages of the SARS-CoV-2 Life Cycle: Exploring Promising Drugs for the Treatment of COVID-19",
"author": "Poduri",
"doi-asserted-by": "crossref",
"first-page": "109721",
"journal-title": "Cell Signal.",
"key": "ref_105",
"volume": "74",
"year": "2020"
},
{
"DOI": "10.1128/spectrum.03331-22",
"doi-asserted-by": "crossref",
"key": "ref_106",
"unstructured": "Wagoner, J., Herring, S., Hsiang, T.Y., Ianevski, A., Biering, S.B., Xu, S., Hoffmann, M., Pöhlmann, S., Gale, M., and Aittokallio, T. (2022). Combinations of Host- and Virus-Targeting Antiviral Drugs Confer Synergistic Suppression of SARS-CoV-2. Microbiol. Spectr., 10."
},
{
"article-title": "Guidelines for Using Antiretroviral Agents among HIV-Infected Adults and Adolescents",
"author": "Dybul",
"first-page": "1",
"journal-title": "MMWR Recomm. Rep.",
"key": "ref_107",
"volume": "51",
"year": "2002"
},
{
"DOI": "10.3390/pathogens13040316",
"doi-asserted-by": "crossref",
"key": "ref_108",
"unstructured": "Babawale, P.I., and Guerrero-Plata, A. (2024). Respiratory Viral Coinfections: Insights into Epidemiology, Immune Response, Pathology, and Clinical Outcomes. Pathogens, 13."
},
{
"DOI": "10.5501/wjv.v13.i4.98600",
"article-title": "Insights from Respiratory Virus Co-infections",
"author": "Georgakopoulou",
"doi-asserted-by": "crossref",
"first-page": "98600",
"journal-title": "World J. Virol.",
"key": "ref_109",
"volume": "13",
"year": "2024"
},
{
"DOI": "10.1128/AAC.03947-14",
"article-title": "Synergistic Effect of Nitazoxanide with Neuraminidase Inhibitors against Influenza A Viruses in Vitro",
"author": "Belardo",
"doi-asserted-by": "crossref",
"first-page": "1061",
"journal-title": "Antimicrob. Agents Chemother.",
"key": "ref_110",
"volume": "59",
"year": "2015"
},
{
"DOI": "10.1177/095632020601700502",
"article-title": "Rimantadine and Oseltamivir Demonstrate Synergistic Combination Effect in an Experimental Infection with Type A (H3N2) Influenza Virus in Mice",
"author": "Galabov",
"doi-asserted-by": "crossref",
"first-page": "251",
"journal-title": "Antivir. Chem. Chemother.",
"key": "ref_111",
"volume": "17",
"year": "2006"
},
{
"DOI": "10.1016/j.ejps.2017.10.027",
"article-title": "Oseltamivir-Zanamivir Combination Therapy Suppresses Drug-Resistant H1N1 Influenza A Viruses in the Hollow Fiber Infection Model (HFIM) System",
"author": "Drusano",
"doi-asserted-by": "crossref",
"first-page": "443",
"journal-title": "Eur. J. Pharm. Sci.",
"key": "ref_112",
"volume": "111",
"year": "2018"
},
{
"DOI": "10.1128/AAC.01739-09",
"article-title": "In Vitro Antiviral Activity of Favipiravir (T-705) against Drug-Resistant Influenza and 2009 A (H1N1) Viruses",
"author": "Sleeman",
"doi-asserted-by": "crossref",
"first-page": "2517",
"journal-title": "Antimicrob. Agents Chemother.",
"key": "ref_113",
"volume": "54",
"year": "2010"
},
{
"DOI": "10.1021/acsptsci.1c00022",
"article-title": "Synergistic Inhibition of SARS-CoV-2 Replication Using Disulfiram/Ebselen and Remdesivir",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "898",
"journal-title": "ACS Pharmacol. Transl. Sci.",
"key": "ref_114",
"volume": "4",
"year": "2021"
},
{
"DOI": "10.3389/fcimb.2021.700502",
"doi-asserted-by": "crossref",
"key": "ref_115",
"unstructured": "Tan, Y.L., Tan, K.S., Chu, J.J.H., and Chow, V.T. (2021). Combination Treatment with Remdesivir and Ivermectin Exerts Highly Synergistic and Potent Antiviral Activity against Murine Coronavirus Infection. Front. Cell. Infect. Microbiol., 11."
},
{
"DOI": "10.1016/j.ymthe.2020.12.016",
"article-title": "Synergistic and Antagonistic Drug Combinations against SARS-CoV-2",
"author": "Bobrowski",
"doi-asserted-by": "crossref",
"first-page": "873",
"journal-title": "Mol. Ther.",
"key": "ref_116",
"volume": "29",
"year": "2021"
},
{
"DOI": "10.1186/s40360-022-00580-8",
"doi-asserted-by": "crossref",
"key": "ref_117",
"unstructured": "Jitobaom, K., Boonarkart, C., Manopwisedjaroen, S., Punyadee, N., Borwornpinyo, S., Thitithanyanont, A., and Auewarakul, P. (2022). Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations. BMC Pharmacol. Toxicol., 23."
},
{
"DOI": "10.1039/D1SC01494C",
"article-title": "Synergistic inhibition of SARS-CoV-2 cell entry by otamixaban and covalent protease inhibitors: Pre-clinical assessment of pharmacological and molecular properties",
"author": "Hempel",
"doi-asserted-by": "crossref",
"first-page": "12600",
"journal-title": "Chem. Sci.",
"key": "ref_118",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1038/s41586-022-04482-x",
"article-title": "Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2",
"author": "Schultz",
"doi-asserted-by": "crossref",
"first-page": "134",
"journal-title": "Nature",
"key": "ref_119",
"volume": "604",
"year": "2022"
},
{
"DOI": "10.1016/j.isci.2021.102367",
"article-title": "Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment",
"author": "Ohashi",
"doi-asserted-by": "crossref",
"first-page": "102367",
"journal-title": "iScience",
"key": "ref_120",
"volume": "24",
"year": "2021"
},
{
"DOI": "10.3390/molecules26092607",
"doi-asserted-by": "crossref",
"key": "ref_121",
"unstructured": "Gao, Y., Cao, J., Xing, P., Altmeyer, R., and Zhang, Y. (2021). Evaluation of small molecule combinations against respiratory syncytial virus in vitro. Molecules, 26."
},
{
"DOI": "10.1021/acsbiomaterials.4c01227",
"article-title": "Natural binary herbal small molecules self-assembled nanogel for synergistic inhibition of respiratory syncytial virus",
"author": "Song",
"doi-asserted-by": "crossref",
"first-page": "6648",
"journal-title": "ACS Biomater. Sci. Eng.",
"key": "ref_122",
"volume": "10",
"year": "2024"
},
{
"DOI": "10.1111/j.1365-2222.2006.02566.x",
"article-title": "Synergistic effects of fluticasone propionate and salmeterol on inhibiting rhinovirus-induced epithelial production of remodelling-associated growth factors",
"author": "Volonaki",
"doi-asserted-by": "crossref",
"first-page": "1268",
"journal-title": "Clin. Exp. Allergy",
"key": "ref_123",
"volume": "36",
"year": "2006"
},
{
"DOI": "10.1128/AAC.01073-16",
"article-title": "In vitro assessment of combinations of enterovirus inhibitors against enterovirus 71",
"author": "Wang",
"doi-asserted-by": "crossref",
"first-page": "5357",
"journal-title": "Antimicrob. Agents Chemother.",
"key": "ref_124",
"volume": "60",
"year": "2016"
},
{
"DOI": "10.20944/preprints202208.0039.v1",
"doi-asserted-by": "crossref",
"key": "ref_125",
"unstructured": "Ianevski, A., Zusinaite, E., Tenson, T., Oksenych, V., Wang, W., Afset, J.E., Bjørås, M., and Kainov, D.E. (2022). Novel synergistic anti-enteroviral drug combinations. Viruses, 14."
},
{
"DOI": "10.1093/infdis/jir174",
"article-title": "Synergistic inhibition of enterovirus 71 replication by interferon and rupintrivir",
"author": "Hung",
"doi-asserted-by": "crossref",
"first-page": "1784",
"journal-title": "J. Infect. Dis.",
"key": "ref_126",
"volume": "203",
"year": "2011"
},
{
"DOI": "10.1016/j.antiviral.2015.10.011",
"article-title": "Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses",
"author": "Kang",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Antivir. Res.",
"key": "ref_127",
"volume": "124",
"year": "2015"
}
],
"reference-count": 127,
"references-count": 127,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.mdpi.com/1999-4915/17/2/252"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Inhaled Dry Powder of Antiviral Agents: A Promising Approach to Treating Respiratory Viral Pathogens",
"type": "journal-article",
"volume": "17"
}