Conv. Plasma
Nigella Sativa
Nitric Oxide
Peg.. Lambda

Home   COVID-19 treatment studies for Ivermectin  COVID-19 treatment studies for Ivermectin  C19 studies: Ivermectin  Ivermectin   Select treatmentSelect treatmentTreatmentsTreatments
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta Molnupiravir Meta
Cannabidiol Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta Nitric Oxide Meta
Ensovibep Meta Paxlovid Meta
Famotidine Meta Peg.. Lambda Meta
Favipiravir Meta Povidone-Iod.. Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Iota-carragee.. Meta
Ivermectin Meta Zinc Meta
Lactoferrin Meta

Other Treatments Global Adoption
All Studies   Meta Analysis   Recent: 
Ivermectin for preventing and treating COVID-19
Popp et al., Cochrane Database of Systematic Reviews, doi:10.1002/14651858.CD015017.pub2 (Preprint) (meta analysis)
28 Jul 2021    Source   PDF   Share   Tweet
This meta analysis is designed to exclude most studies. Authors select a small subset of studies, with a majority of results based on only 1 or 2 studies. Authors split up studies which dilutes the effects and results in a lack of statistical significance for most outcomes. Authors perform 16+ meta analyses with very few studies in each analysis, and do not combine the evidence from all studies. However, we can consider the probability of the observed results across all outcomes.
Authors find positive results for 11 of 12 primary efficacy outcomes with events, or 16 of 18 including secondary outcomes. One of the primary outcomes and two of the secondary outcomes show statistically significant improvements in isolation. If we assume independence, the probability that 11+ of 12 primary efficacy outcomes were positive for an ineffective treatment is p = 0.003. For 16+ of 18 outcomes we get p = 0.0007. This simple analysis does not take into account the magnitude of positive effects, or the dependence due to some studies contributing multiple outcomes, however observation suggests that a full analysis of the combined evidence is likely to show efficacy.
The study is entirely retrospective in the current version. The protocol is dated April 20, 2021, and the most recent study included is from March 9, 2021. The protocol was modified after publication in order to include a close to null result ([Beltran Gonzalez] "patients discharged without respiratory deterioration or death at 28 days"), so the current protocol is dated July 28, 2021.
Authors excluded many studies by requiring results at a specific time, for example mortality, ventilation, etc. required results at exactly 28 days. Authors excluded all prophylaxis studies by requiring results at exactly 14 days.
Studies comparing with other medications were excluded, however these studies confirm efficacy of ivermectin. The only case where they could overstate the efficacy of ivermectin is if the other medication was harmful. There is some evidence of this for excessive dosage/very late stage use, however that does not apply to any of the studies here.
Studies using combined treatment were excluded, even when it is known that the other components have minimal or no effect. 3 of 4 RCTs with combined treatment use doxycycline in addition [Butler]. Other studies were excluded by requiring PCR confirmation.
Authors are inconsistent regarding active comparators. They state that hydroxychloroquine “does not work”, yet excluded trials comparing ivermectin to a drug they hold to be inactive. On the other hand, remdesivir was an acceptable comparator, although it is considered to be effective standard of care in some locations [Fordham].
Authors fail to recognize that Risk of Bias (RoB) domains such as blinding are far less important for the objective outcome of mortality.
Authors include [Beltran Gonzalez] as "moderate" COVID-19, however patients in this study were in severe condition (baseline SatO2 83).
[Fordham] summarizes several problems:
unsupported assertions of adverse reactions to ivermectin, and the outdated claim that unsafe dosing would be needed to be effective;
a demand for PCR or antigen testing, without analysis of reliability and not universally available even in developed countries at the start of the pandemic;
contradictions in the exclusion criteria, including placebo and approved SoC comparators, but rejecting hydroxychloroquine, though held to be ineffective (and an approved SoC in some jurisdictions);
inclusion of “deemed active” comparators whilst excluding “potentially active” ones;
exclusion of combination therapies, though the norm among practising clinicians;
the rejection of other than RCTs when the objective is a “complete evidence profile”;
arbitrary time-points for outcome measures, excluding non-compliant trials;
fragmentation of data by location of care under varying hospitalisation criteria;
the resulting focus on a small fraction of the available clinical evidence, with most comparisons based on single studies with no meta-analysis possible;
a resulting inpatient mortality comparison with fewer patients than a June 2020 confounder-matched study;
no conclusion on the headline mortality outcome, when multiple lines of evidence from elsewhere (including the WHO) point to significant mortality advantage.
Cochrane was reputable in the past, but is now controlled by pharmaceutical interests. For example, see the news related to the expulsion of founder Dr. Gøtzsche and the associated mass resignation of board members in protest [,,]. For another example of bias see [].
The BiRD group gave the following early comment: "Yesterday’s Cochrane review surprisingly doesn’t take a pragmatic approach comparing ivermectin versus no ivermectin, like in the majority of other existing reviews. It uses a granular approach similar to WHO’s and the flawed Roman et al paper, splitting studies up and thereby diluting effects. Consequently, the uncertain conclusions add nothing to the evidence base. A further obfuscation of the evidence on ivermectin and an example of research waste. Funding conflicts of interests of the authors and of the journal concerned should be examined."
For dicussion of issues added in the updated version see [Popp].
Authors report funding from the German Federal Ministry of Education and Research, which may be influenced by [].
Bias due to funding is ignored for both analyzed studies and Cochrane. For Cochrane funders see [, (B)].
Currently there are 93 ivermectin studies and meta analysis shows:
Mortality51% lower [37‑62%]
Ventilation29% lower [13‑42%]
ICU admission42% lower [18‑59%]
Hospitalization34% lower [20‑45%]
Cases78% fewer [67‑86%]
Popp et al., 28 Jul 2021, preprint, 8 authors.
All Studies   Meta Analysis   Submit Updates or Corrections
This PaperIvermectinAll
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop