Conv. Plasma
Nigella Sativa

All ivermectin studies
Meta analysis
study COVID-19 treatment researchIvermectinIvermectin (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Novel non-covalent ivermectin complex Didenectin is revolutionizing healthcare

Didenko, K., Zenodo, doi:10.5281/zenodo.10215620
Nov 2023  
  Source   PDF   All Studies   Meta AnalysisMeta
Ivermectin for COVID-19
4th treatment shown to reduce risk in August 2020
*, now known with p < 0.00000000001 from 100 studies, recognized in 22 countries.
No treatment is 100% effective. Protocols combine complementary and synergistic treatments. * >10% efficacy in meta analysis with ≥3 clinical studies.
3,800+ studies for 60+ treatments.
Report on a non-covalent complex of ivermectin called Didenectin, showing improved solubility and lower toxicity in animals, and promising results in early testing for SARS-CoV-2 and Dengue.
Didenko et al., 29 Nov 2023, peer-reviewed, 1 author. Contact:
This PaperIvermectinAll
Novel non-covalent ivermectin complex Didenectin is revolutionizing healthcare
Kirill Didenko
COVID-19 pandemic has accelerated scientific knowledge and led to groundbreaking advancements in virology, and it has also given rise development of new viruses based on the coronavirus both in governmental and private laboratories all over the world. Laboratory accidents, no matter how well-controlled, can happen. We need to explore a development of an effective treatment that can mitigate the potential misuse of the coronavirus as a foundation for new viruses. In this article, we introduce a revolutionary breakthrough in coronavirus treatment, new ivermectin-based complex Didenectin (antiviral ivermectin), which is proved to reduce virus load to 100 times during 24h, leading to revolutionary rapid recovery of SARS-CoV-2 patients and Dengue patients within a record 24-hour timeframe. The newly developed ivermectin-polymer complex, known as Didenectin, is derived from an innovative solid dispersion of ivermectin formed through the novel process of mechanochemical activation. This complex combines with arabinogalactan polymer to create a non-covalent interaction. The ivermectin-polymer complex Didenectin, due to its modified molecular structure, exhibits altered properties, including a 20-fold increase in solubility, increased bioavailability, enhanced permeability, and, simultaneously, a 3.4-fold reduction in oral toxicity compare to ordinary ivermectin. The substantial changes in drug parameters compared to the base compound result in a qualitatively new treatment outcome and results in a significant 100 times reduction in the viral load within the initial 24-hour period. Instead of merely improving treatment efficacy indicators, such as ventilation, ICU admissions, hospitalization, and recovery, the treatment led to the complete recovery of patients in the shortest time possible. The treatment duration for the infection is reduced to just 1 day at a single dose of more than 600-700 μg/kg (according to pure IVM). As ivermectin is under investigation as an anticancer agent, Didenectin emerges as a promising candidate for cancer treatment due to its low toxicity. * -Doses and concentrations highlighted in bold were used to construct a dose-C max linear regression. † -Theoretical calculated doses estimated based on linear regression. 1 -The ingested amount (in μg/kg/day) was derived from an estimated body weight of 75 kg for patients with unknown body weight. 2 -Calculated by plasma-lung ratio 2.67 [2]. ‡ -Maximum single dose have been used in a trial in healthy volunteers without clinically significant safety issues [6].
Table 15 . Documented in vitro antiviral action of ivermectin [13] . Virus InhibitoryConcentration / Foldreduction According to studies, Ivermectin has broad anticancer activity and has antitumor effects in vitro and in vivo [19, 20, 21] . Didenectin emerges as a promising candidate for cancer treatment due to its low toxicity.
Caly, Druce, Catton, Jans, Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Res, doi:10.1016/j.antiviral.2020.104787
Chaccourc, Blanco-Dimatteoa, Pinedai, Fernandez-Monteroa, Ruiz-Castillop et al., The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial, EClinicalMedicine, doi:10.1016/j.eclinm.2020.100720
Chung, Yang, Wu, Deng, Tsai, Agricultural avermectins: an uncommon but potentially fatal cause of pesticide poisoning, Ann Emerg Med, doi:10.1016/s0196-0644(99)70271-4
Crump, Ivermectin: enigmatic multifaceted 'wonder' drug continues to surprise and exceed expectations, J Antibiot, doi:10.1038/ja.2017.11
Guzzo, Furtek, Porras, Chen, Tipping et al., Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects, J ClinPharmacol, doi:10.1177/009127002401382731
Heidary, Gharebaghi, Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen, J Antibiot, doi:10.1038/s41429-020-0336-z
Hu, Tan, Yu, Liao, Guo, Repurposing Ivermectin to augment chemotherapy's efficacy in osteosarcoma, Hum ExpToxicol, doi:10.1177/09603271221143693
Jans, Wagstaff, Ivermectin as a Broad-Spectrum Host-Directed Antiviral: The Real Deal?, Cells, doi:10.3390/cells9092100
Jermain, Hanafin, Cao, Lifschitz, Lanusse et al., Development of a Minimal Physiologically-Based Pharmacokinetic Model to Simulate Lung Exposure in Humans Following Oral Administration of Ivermectin for COVID-19 Drug Repurposing, J Pharm Sci, doi:10.1016/j.xphs.2020.08.024
Juarez, Schcolnik-Cabrera, Dueñas-Gonzalez, The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug, Am J Cancer Res
Kositz, Bradley, Hutchins, Last, 'alessandro et al., Broadening the range of use cases for ivermectin -a review of the evidence, Trans R Soc Trop Med Hyg, doi:10.1093/trstmh/trab114
Krolewieckia, Moragasm, Travaciom, Valentinir, Alonsodf et al., Antiviral effect of high-dose ivermectin in adults with COVID-19: A proof-of-concept randomized trial, EClinicalMedicine, doi:10.1016/j.eclinm.2021.100959
Lespine, Martin, Dupuy, Roulet, Pineau et al., Interaction of macrocyclic lactones with P-glycoprotein: structure-affinity relationship, Eur J Pharm Sci, doi:10.1016/j.ejps.2006.10.004
Lifschitz, Virkel, Sallovitz, Sutra, Galtier et al., Comparative distribution of ivermectin and doramectin to parasite location tissues in cattle, Vet Parasitol, doi:10.1016/s0304-4017(99)00175-2
Musaevm, Zaschepkinav, Khalikovs, Dzhamalovaa, Effects of the 2% supramolecular complex of ivermectin in overdoses on horses, Russian Journal of Parasitology, doi:10.31016/1998-8435-2022-16-2-203-212
Na-Bangchang, High-performance liquid chromatographic method for the determination of ivermectin in plasma, Southeast Asian J Trop Med Public Health
Navarrom, Camprubí, Requena-Méndeza, Buonfrated, Giorlig et al., Safety of high-dose ivermectin: a systematic review and meta-analysis, J AntimicrobChemother, doi:10.1093/jac/dkz524
Nihal, Ahmad, Dose translation from animal to human studies revisited, FASEB J
Pandi, Bulusu, Kommineni, Khan, Singh, Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products, Int J Pharm, doi:10.1016/j.ijpharm.2020.119560
Rojas-Oviedo, Retchkiman-Corona, Quirino-Barreda, Cárdenas, Schabes-Retchkiman, Solubility Enhancement of a Poorly Water Soluble Drug by Forming Solid Dispersions using Mechanochemical Activation, Indian J Pharm Sci, doi:10.4103/0250-474X.110576
Savjanikt, Gajjarak, Savjanijk, Drug solubility: importance and enhancement techniques, ISRN Pharm, doi:10.5402/2012/195727
Schmith, Zhou, Lohmer, The Approved Dose of Ivermectin Alone is not the Ideal Dose for the Treatment of COVID-19, ClinPharmacolTher, doi:10.1002/cpt.1889
Tangm, Hux, Wangy, Yaox, Zhangw et al., Ivermectin, a potential anticancer drug derived from an antiparasitic drug, Pharmacol Res, doi:10.1016/j.phrs.2020.105207
Vasconcelos, Sarmento, Costa, Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs, Drug Discov Today, doi:10.1016/j.drudis.2007.09.005
Wang, Pharmacology/Toxicology NDA review and evaluation
Yamasmith, Efficacy and Safety of Ivermectin against Dengue Infection: A Phase III, Randomized, Double-blind, Placebo-controlled Trial
Zashchepkina, Acute Oral Toxicity of the Supramolecular Complex of Ivermectin, Russian Journal of Parasitology, doi:10.31016/1998-8435-2020-14-1-59-63
Zashchepkina, The Study of the Cumulative Properties of the Supramolecular Complex of Ivermectin, Russian Journal of Parasitology, doi:10.31016/1998-8435-2019-13-4-72-76
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop