Decoding the genome of SARS-CoV-2: a pathway to drug development through translation inhibition
Shan-Na Wu, Ting Xiao, Hui Chen, Xiao-Hong Li
RNA Biology, doi:10.1080/15476286.2024.2433830
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19) pandemic and is continuously spreading globally. The continuous emergence of new SARS-CoV-2 variants keeps posing threats, highlighting the need for fast-acting, mutation-resistant broadspectrum therapeutics. Protein translation is vital for SARS-CoV-2 replication, producing early nonstructural proteins for RNA replication and transcription, and late structural proteins for virion assembly. Targeted blocking of viral protein translation is thus a potential approach to developing effective anti-SARS-CoV-2 drugs. SARS-CoV-2, as an obligate parasite, utilizes the host's translation machinery. Translation-blocking strategies that target the SARS-CoV-2 mRNA, especially those that target its conserved elements are generally preferred. In this review, we discuss the current understanding of SARS-CoV-2 translation, highlighting the important conserved motifs and structures involved in its regulation. We also discuss the current strategies for blocking SARS-CoV-2 translation through viral RNA degradation or RNA element dysfunction.
References
Aldhumani, Hossain, Fairchild, RNA sequence and ligand binding alter conformational profile of SARS-CoV-2 stem loop II motif, Biochem Biophys Res Commun,
doi:10.1016/j.bbrc.2021.01.013
Babendure, Babendure, Ding, Control of mammalian translation by mRNA structure near caps, RNA,
doi:10.1261/rna.2309906
Baldassarre, Paolini, Bruno, Potential use of noncoding RNAs and innovative therapeutic strategies to target the 5'UTR of SARS-CoV-2, Epigenomics,
doi:10.2217/epi-2020-0162
Banerjee, Blanco, Bruce, SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses, Cell,
doi:10.1016/j.cell.2020.10.004
Berry, Waghray, Mortimer, Crystal structure of the HCV IRES central domain reveals strategy for start-codon positioning, Structure,
doi:10.1016/j.str.2011.08.002
Bhatt, Scaiola, Loughran, Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome, Science,
doi:10.1126/science.abf3546
Brant, Tian, Majerciak, SARS-CoV-2: from its discovery to genome structure, transcription, and replication, Cell Biosci,
doi:10.1186/s13578-021-00643-z
Chamond, Deforges, Ulryck, 40S recruitment in the absence of eIF4G/4A by EMCV IRES refines the model for translation initiation on the archetype of type II IRESs, Nucleic Acids Res,
doi:10.1093/nar/gku720
Condé, Allatif, Ohlmann, Translation of SARS-CoV-2 gRNA is extremely efficient and competitive despite a High degree of secondary structures and the presence of an uORF, Viruses,
doi:10.3390/v14071505
Cortese, Lee, Cerikan, Integrative imaging reveals SARS-CoV-2-induced reshaping of subcellular morphologies, Cell Host Microbe,
doi:10.1016/j.chom.2020.11.003
Coutard, Valle, De Lamballerie, The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade, Antiviral Res,
doi:10.1016/j.antiviral.2020.104742
De Breyne, Yu, Unbehaun, Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites, Proc Natl Acad Sci,
doi:10.1073/pnas.0900153106
Dey, Yan, Schlick, Abolished frameshifting for predicted structure-stabilizing SARS-CoV-2 mutants: implications to alternative conformations and their statistical structural analyses, RNA,
doi:10.1261/rna.080035.124
Dhorne-Pollet, Fitzpatrick, Costa, Antisense oligonucleotides targeting ORF1b block replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Front Microbiol,
doi:10.3389/fmicb.2022.915202
Dinman, Mechanisms and implications of programmed translational frameshifting, Wiley Interdiscip Rev RNA,
doi:10.1002/wrna.1126
Embarc-Buh, Francisco-Velilla, Martinez-Salas, RNA-Binding proteins at the host-pathogen interface targeting viral regulatory elements, Viruses,
doi:10.3390/v13060952
Fareh, Zhao, Hu, Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance, Nat Commun,
doi:10.1038/s41467-021-24577-9
Fernández-Miragall, Salas, Structural organization of a viral IRES depends on the integrity of the GNRA motif, RNA,
doi:10.1261/rna.5950603
Fields, Howley, De, Coronaviruses
Frye, Cunningham, Mihailescu, Characterization of the SARS-CoV-2 genome 3 0 -untranslated region interactions with Host MicroRNAs, ACS Omega,
doi:10.1021/acsomega.4c01050
Ganser, Kelly, Herschlag, The roles of structural dynamics in the cellular functions of RNAs, Nat Rev Mol Cell Biol,
doi:10.1038/s41580-019-0136-0
Gerresheim, Dünnes, Nieder-Röhrmann, microRNA-122 target sites in the hepatitis C virus RNA NS5B coding region and 3 0 untranslated region: function in replication and influence of RNA secondary structure, Cell Mol Life Sci,
doi:10.1007/s00018-016-2377-9
Goebel, Miller, Bennett, A hypervariable region within the 3 0 cis -acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis, J Virol,
doi:10.1128/JVI.00803-06
Gorbalenya, Baker, Baric, The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2, Nat Microbiol,
doi:10.1038/s41564-020-0695-z
Gross, Vicens, Einhorn, The IRES5 0 UTR of the dicistrovirus cricket paralysis virus is a type III IRES containing an essential pseudoknot structure, Nucleic Acids Res,
doi:10.1093/nar/gkx622
Gutell, Cannone, Konings, Predicting U-turns in ribosomal RNA with comparative sequence analysis, J Mol Biol,
doi:10.1006/jmbi.2000.3900
Hahn, Hahn, Rice, Conserved elements in the 3 0 untranslated region of flavivirus RNAs and potential cyclization sequences, J Mol Biol,
doi:10.1016/0022-2836(87)90455-4
Haniff, Tong, Liu, Targeting the SARS-CoV-2 RNA genome with small molecule binders and ribonuclease targeting chimera (RIBOTAC) degraders, ACS Cent Sci,
doi:10.1021/acscentsci.0c00984
Hashem, Des Georges, Dhote, Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit, Nature,
doi:10.1038/nature12658
Hinnebusch, Ivanov, Sonenberg, Translational control by 5 0 -untranslated regions of eukaryotic mRNAs, Science,
doi:10.1126/science.aad9868
Huang, Lokugamage, Rozovics, SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRnas: viral mRNAs are resistant to nsp1-induced RNA cleavage, PloS Pathog,
doi:10.1371/journal.ppat.1002433
Huston, Wan, Strine, Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms, Mol Cell,
doi:10.1016/j.molcel.2020.12.041
Imperatore, Cunningham, Pellegrene, Highly conserved s2m element of SARS-CoV-2 dimerizes via a kissing complex and interacts with host miRNA-1307-3p, Nucleic Acids Res,
doi:10.1093/nar/gkab1226
Jiang, Joshi, Gan, The highly conserved stem-loop II motif is dispensable for SARS-CoV-2, J Virol,
doi:10.1128/jvi.00635-23
Kean, The role of mRNA 5 0 -noncoding and 3 0 -end sequences on 40S ribosomal subunit recruitment, and how RNA viruses successfully compete with cellular mRNAs to ensure their own protein synthesis, Biol Cell,
doi:10.1016/S0248-4900(03)00030-3
Kelly, Olson, Neupane, Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2), J Biol Chem,
doi:10.1074/jbc.AC120.013449
Khaitov, Nikonova, Shilovskiy, Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation, Allergy,
doi:10.1111/all.14850
Kozak, Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell,
doi:10.1016/0092-8674(86)90762-2
Kung, Lee, Chiang, Molecular virology of SARS-CoV-2 and related coronaviruses, Microbiol Mol Biol Rev,
doi:10.1128/mmbr.00026-21
Lapointe, Grosely, Johnson, Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation, Proc Natl Acad Sci,
doi:10.1073/pnas.2017715118
Lee, Budhathoki, Lee, Broad-spectrum antiviral activity of 3D8, a nucleic acid-hydrolyzing single-chain variable fragment (scFv), targeting SARS-CoV-2 and multiple coronaviruses in vitro, Viruses,
doi:10.3390/v13040650
Lei, Cheng, Wang, The influence of host miRNA binding to RNA within RNA viruses on virus multiplication, Front Cell Infect Microbiol,
doi:10.3389/fcimb.2022.802149
Leppek, Das, Barna, Functional 5 0 UTR mRNA structures in eukaryotic translation regulation and how to find them, Nat Rev Mol Cell Biol,
doi:10.1038/nrm.2017.103
Li, Kang, Liu, Structural lability in stem-loop 1 drives a 5 0 UTR-3 0 UTR interaction in coronavirus replication, J Mol Biol,
doi:10.1016/j.jmb.2008.01.068
Li, Sczepanski, Targeting a conserved structural element from the SARS-CoV-2 genome using l-DNA aptamers, RSC Chem Biol,
doi:10.1039/D1CB00172H
Li, Structure-based design of antisense oligonucleotides that inhibit SARS-CoV-2 replication, bioRxiv
Li, Zhang, Zhang, LinearTurboFold: linear-time global prediction of conserved structures for RNA homologs with applications to SARS-CoV-2, Proc Natl Acad Sci U S A,
doi:10.1073/pnas.2116269118
Lulla, Wandel, Bandyra, Targeting the conserved stem loop 2 motif in the SARS-CoV-2 genome, J Virol,
doi:10.1128/JVI.00663-21
Malone, Urakova, Snijder, Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design, Nat Rev Mol Cell Biol,
doi:10.1038/s41580-021-00432-z
Manfredonia, Nithin, Ponce-Salvatierra, Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements, Nucleic Acids Res,
doi:10.1093/nar/gkaa1053
Martinez-Salas, Velilla, Fernandez-Chamorro, Insights into structural and mechanistic features of viral IRES elements, Front Microbiol,
doi:10.3389/fmicb.2017.02629
Nabiabad, Amini, Demirdas, Specific delivering of RNAi using spike's aptamer-functionalized lipid nanoparticles for targeting SARS-CoV-2: a strong anti-covid drug in a clinical case study, Chem Biol Drug Des,
doi:10.1111/cbdd.13978
Ou, Liu, Lei, Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nat Commun,
doi:10.1038/s41467-020-15562-9
Pfafenrot, Schneider, Müller, Inhibition of SARS-CoV-2 coronavirus proliferation by designer antisense-circRNAs, Nucleic Acids Res,
doi:10.1093/nar/gkab1096
Ramos-Lorente, Berzal-Herranz, Romero-López, Recruitment of the 40S ribosomal subunit by the West Nile virus 3 0 UTR promotes the cross-talk between the viral genomic ends for translation regulation, Virus Res,
doi:10.1016/j.virusres.2024.199340
Roman, Lewicka, Koirala, The SARS-CoV-2 programmed -1 ribosomal frameshifting element crystal structure solved to 2.09 Å using chaperone-assisted RNA crystallography, ACS Chem Biol,
doi:10.1021/acschembio.1c00324
Rosenke, Leventhal, Moulton, Inhibition of SARS-CoV-2 in Vero cell cultures by peptide-conjugated morpholino oligomers, J Antimicrob Chemother,
doi:10.1093/jac/dkaa460
Schlick, Zhu, Dey, To knot or not to knot: multiple conformations of the SARS-CoV-2 frameshifting RNA element, J Am Chem Soc,
doi:10.1021/jacs.1c03003
Schoggins, Wilson, Panis, A diverse range of gene products are effectors of the type I interferon antiviral response, Nature,
doi:10.1038/nature09907
Schubert, Karousis, Jomaa, SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation, Nat Struct Mol Biol,
doi:10.1038/s41594-020-0511-8
Slobodin, Sehrawat, Cap-independent translation and a precisely located RNA sequence enable SARS-CoV-2 to control host translation and escape anti-viral response, Nucleic Acids Res,
doi:10.1093/nar/gkac615
Snijder, Bredenbeek, Dobbe, Unique and conserved features of genome and proteome of sars-coronavirus, an early split-off from the coronavirus group 2 lineage, J Mol Biol,
doi:10.1016/S0022-2836(03)00865-9
Snijder, Limpens, De Wilde, A unifying structural and functional model of the coronavirus replication organelle: tracking down RNA synthesis, PLoS Biol,
doi:10.1371/journal.pbio.3000715
Sorokin, Vassilenko, Terenin, Non-canonical translation initiation mechanisms employed by Eukaryotic viral mRNAs, Biochemistry (Mosc),
doi:10.1134/S0006297921090042
Spahn, Mulder, Cryo-em visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor, Cell,
doi:10.1016/j.cell.2004.08.001
Su, Ma, Feng, Efficient inhibition of SARS-CoV-2 using chimeric antisense oligonucleotides through RNase L activation*, Angew Chem Int Ed Engl,
doi:10.1002/anie.202105942
Sun, Abriola, Niederer, Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting, Proc Natl Acad Sci,
doi:10.1073/pnas.2023051118
Sun, Li, Ju, In vivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs, Cell,
doi:10.1016/j.cell.2021.02.008
Szczesniak, Baliga-Gil, Jarmolowicz, Structural and functional RNA motifs of SARS-CoV-2 and influenza a virus as a target of viral inhibitors, Int J Mol Sci,
doi:10.3390/ijms24021232
Tengs, Kristoffersen, Bachvaroff, A mobile genetic element with unknown function found in distantly related viruses, Virol J,
doi:10.1186/1743-422X-10-132
Thoms, Buschauer, Ameismeier, Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2, Science,
doi:10.1126/science.abc8665
Tidu, Janvier, Schaeffer, The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation, RNA,
doi:10.1261/rna.078121.120
Tolksdorf, Nie, Niemeyer, Inhibition of SARS-CoV-2 replication by a small interfering RNA targeting the leader sequence, Viruses,
doi:10.3390/v13102030
Varricchio, Mathez, Pillonel, Geneticin shows selective antiviral activity against SARS-CoV-2 by interfering with programmed -1 ribosomal frameshifting, Antiviral Res,
doi:10.1016/j.antiviral.2022.105452
Vora, Fontana, Mao, Targeting stem-loop 1 of the SARS-CoV-2 5 0 UTR to suppress viral translation and Nsp1 evasion, Proc Natl Acad Sci,
doi:10.1073/pnas.2117198119
Wacker, Weigand, Akabayov, Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy, Nucleic Acids Res,
doi:10.1093/nar/gkaa1013
Wang, Zhou, Wang, Rapid design and development of CRISPR-Cas13a targeting SARS-CoV-2 spike protein, Theranostics,
doi:10.7150/thno.51479
Weinlich, Hüttelmaier, Schierhorn, IGF2BP1 enhances HCV ires-mediated translation initiation via the 3 0 UTR, RNA,
doi:10.1261/rna.1578409
Wethmar, The regulatory potential of upstream open reading frames in eukaryotic gene expression, Wiley Interdiscip Rev RNA,
doi:10.1002/wrna.1245
Wu, Luo, Developing effective siRNAs to reduce the expression of key viral genes of COVID-19, Int J Biol Sci,
doi:10.7150/ijbs.59151
Yang, Olatunji, Rhodes, Discovery of small molecules targeting the frameshifting element RNA in SARS-CoV-2 viral genome, ACS Med Chem Lett,
doi:10.1021/acsmedchemlett.3c00051
Zafferani, Haddad, Luo, Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures, Sci Adv,
doi:10.1126/sciadv.abl6096
Zeng, Liu, Nguyenla, Broad-spectrum crispr-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro, Nat Commun,
doi:10.1038/s41467-022-30546-7
Zhang, Almazi, Ong, Nanoparticle delivery platforms for RNAi therapeutics targeting COVID-19 disease in the respiratory tract, Int J Mol Sci,
doi:10.3390/ijms23052408
Zhang, Huang, Ren, Comparison of viral RNA-host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2, Cell Res,
doi:10.1038/s41422-021-00581-y
Zhang, Zheludev, Hagey, Cryo-em and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome, Nat Struct Mol Biol,
doi:10.1038/s41594-021-00653-y
{ 'indexed': { 'date-parts': [[2024, 12, 12]],
'date-time': '2024-12-12T15:10:22Z',
'timestamp': 1734016222442,
'version': '3.30.2'},
'reference-count': 142,
'publisher': 'Informa UK Limited',
'issue': '1',
'license': [ { 'start': { 'date-parts': [[2024, 12, 4]],
'date-time': '2024-12-04T00:00:00Z',
'timestamp': 1733270400000},
'content-version': 'vor',
'delay-in-days': 0,
'URL': 'http://creativecommons.org/licenses/by-nc/4.0/'}],
'funder': [ { 'DOI': '10.13039/501100018542',
'name': 'Natural Science Foundation of Sichuan Province',
'doi-asserted-by': 'crossref',
'award': ['2022NSFSC0722'],
'id': [{'id': '10.13039/501100018542', 'id-type': 'DOI', 'asserted-by': 'crossref'}]}],
'content-domain': {'domain': ['www.tandfonline.com'], 'crossmark-restriction': True},
'published-print': {'date-parts': [[2024, 12, 31]]},
'DOI': '10.1080/15476286.2024.2433830',
'type': 'journal-article',
'created': {'date-parts': [[2024, 12, 4]], 'date-time': '2024-12-04T15:38:17Z', 'timestamp': 1733326697000},
'page': '1290-1307',
'update-policy': 'https://doi.org/10.1080/tandf_crossmark_01',
'source': 'Crossref',
'is-referenced-by-count': 0,
'title': 'Decoding the genome of SARS-CoV-2: a pathway to drug development through translation inhibition',
'prefix': '10.1080',
'volume': '21',
'author': [ { 'given': 'Shan-Na',
'family': 'Wu',
'sequence': 'first',
'affiliation': [ { 'name': 'Department of Pharmaceutics, Key Laboratory of Drug-Targeting '
'and Drug Delivery System of the Education Ministry and Sichuan '
'Province, Sichuan Engineering Laboratory for Plant-Sourced Drug '
'and Sichuan Research Center for Drug Precision Industrial '
'Technology, West China School of Pharmacy, Sichuan University, '
'Chengdu, China'}]},
{ 'given': 'Ting',
'family': 'Xiao',
'sequence': 'additional',
'affiliation': [ { 'name': 'Key Laboratory of Birth Defects and Related Diseases of Women '
'and Children, Children’s Medicine Key Laboratory of Sichuan '
'Province, Department of Pharmacy/Evidence-Based Pharmacy Center, '
'West China Second University Hospital, Sichuan University, '
'Chengdu, China'}]},
{ 'given': 'Hui',
'family': 'Chen',
'sequence': 'additional',
'affiliation': [ { 'name': 'Key Laboratory of Birth Defects and Related Diseases of Women '
'and Children, Children’s Medicine Key Laboratory of Sichuan '
'Province, Department of Pharmacy/Evidence-Based Pharmacy Center, '
'West China Second University Hospital, Sichuan University, '
'Chengdu, China'}]},
{ 'given': 'Xiao-Hong',
'family': 'Li',
'sequence': 'additional',
'affiliation': [ { 'name': 'Department of Pharmaceutics, Key Laboratory of Drug-Targeting '
'and Drug Delivery System of the Education Ministry and Sichuan '
'Province, Sichuan Engineering Laboratory for Plant-Sourced Drug '
'and Sichuan Research Center for Drug Precision Industrial '
'Technology, West China School of Pharmacy, Sichuan University, '
'Chengdu, China'}]}],
'member': '301',
'published-online': {'date-parts': [[2024, 12, 4]]},
'reference': [ {'key': 'e_1_3_4_2_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41564-020-0695-z'},
{ 'key': 'e_1_3_4_3_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.antiviral.2013.08.015'},
{'key': 'e_1_3_4_4_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41573-023-00672-y'},
{'key': 'e_1_3_4_5_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/mmbr.00026-21'},
{'key': 'e_1_3_4_6_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/978-3-030-85109-5_2'},
{'key': 'e_1_3_4_7_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v13060952'},
{'key': 'e_1_3_4_8_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41580-019-0136-0'},
{'key': 'e_1_3_4_9_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2020.04.011'},
{'key': 'e_1_3_4_10_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2003138117'},
{'key': 'e_1_3_4_11_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-020-15562-9'},
{ 'key': 'e_1_3_4_12_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.antiviral.2020.104742'},
{'key': 'e_1_3_4_13_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1099/0022-1317-81-4-853'},
{ 'key': 'e_1_3_4_14_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/S0022-2836(03)00865-9'},
{'key': 'e_1_3_4_15_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abc8665'},
{'key': 'e_1_3_4_16_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41594-020-0511-8'},
{'key': 'e_1_3_4_17_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41580-021-00432-z'},
{ 'key': 'e_1_3_4_18_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1371/journal.pbio.3000715'},
{'key': 'e_1_3_4_19_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.chom.2020.11.003'},
{'key': 'e_1_3_4_20_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1074/jbc.REV120.013930'},
{ 'key': 'e_1_3_4_21_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1146/annurev-virology-100114-055218'},
{ 'volume-title': 'Coronaviruses, in fields virology',
'year': '2001',
'author': 'Fields BN',
'key': 'e_1_3_4_22_1',
'unstructured': 'Fields BN, Howley PM, Griffin DE. Coronaviruses, in fields virology, H. '
'KV, Editor. PA (USA): Lippincott Williams & Wilkins; 2001.'},
{'key': 'e_1_3_4_23_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s13578-021-00643-z'},
{ 'key': 'e_1_3_4_24_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1371/journal.pbio.0030172'},
{'key': 'e_1_3_4_25_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abf3546'},
{ 'key': 'e_1_3_4_26_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1021/acs.accounts.1c00316'},
{'key': 'e_1_3_4_27_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2020.10.004'},
{'key': 'e_1_3_4_28_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2017715118'},
{'key': 'e_1_3_4_29_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-021-03610-3'},
{'key': 'e_1_3_4_30_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1261/rna.078121.120'},
{ 'key': 'e_1_3_4_31_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1371/journal.ppat.1002433'},
{'key': 'e_1_3_4_32_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2117198119'},
{ 'key': 'e_1_3_4_33_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/S0378-1119(99)00210-3'},
{'key': 'e_1_3_4_34_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v14071505'},
{'key': 'e_1_3_4_35_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nature09907'},
{'key': 'e_1_3_4_36_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.aad9868'},
{'key': 'e_1_3_4_37_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1261/rna.2309906'},
{ 'key': 'e_1_3_4_38_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1080/15476286.2019.1632634'},
{'key': 'e_1_3_4_39_1', 'doi-asserted-by': 'publisher', 'DOI': '10.15252/embj.201592759'},
{'key': 'e_1_3_4_40_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/wrna.1245'},
{ 'key': 'e_1_3_4_41_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1080/15476286.2020.1814556'},
{'key': 'e_1_3_4_42_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2021.02.008'},
{'key': 'e_1_3_4_43_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkaa1053'},
{ 'key': 'e_1_3_4_44_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.molcel.2020.12.041'},
{'key': 'e_1_3_4_45_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-021-25361-5'},
{'key': 'e_1_3_4_46_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-020-2739-1'},
{'key': 'e_1_3_4_47_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkac615'},
{ 'key': 'e_1_3_4_48_1',
'doi-asserted-by': 'publisher',
'DOI': '10.2174/1389557521666210217092305'},
{ 'key': 'e_1_3_4_49_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.virusres.2024.199340'},
{ 'key': 'e_1_3_4_50_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/S0378-1119(02)01056-9'},
{ 'key': 'e_1_3_4_51_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/0092-8674(86)90762-2'},
{'key': 'e_1_3_4_52_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1134/S0006297921090042'},
{'key': 'e_1_3_4_53_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1099/vir.0.042499-0'},
{ 'key': 'e_1_3_4_54_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/cshperspect.a032672'},
{'key': 'e_1_3_4_55_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.0900153106'},
{'key': 'e_1_3_4_56_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2004.08.001'},
{'key': 'e_1_3_4_57_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nature12658'},
{'key': 'e_1_3_4_58_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gku720'},
{'key': 'e_1_3_4_59_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2017.02629'},
{ 'key': 'e_1_3_4_60_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.virusres.2008.06.004'},
{'key': 'e_1_3_4_61_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkx622'},
{'key': 'e_1_3_4_62_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1261/rna.5950603'},
{'key': 'e_1_3_4_63_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.str.2011.08.002'},
{ 'key': 'e_1_3_4_64_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/S1369-5274(00)00069-2'},
{'key': 'e_1_3_4_65_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1006/jmbi.2000.3900'},
{ 'key': 'e_1_3_4_66_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.molcel.2019.04.022'},
{ 'key': 'e_1_3_4_67_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.jtherbio.2017.02.006'},
{ 'key': 'e_1_3_4_68_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/cshperspect.a033001'},
{'key': 'e_1_3_4_69_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41579-018-0117-x'},
{'key': 'e_1_3_4_70_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-021-25999-1'},
{'key': 'e_1_3_4_71_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkaa1013'},
{'key': 'e_1_3_4_72_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.00803-06'},
{ 'key': 'e_1_3_4_73_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.molcel.2020.11.004'},
{'key': 'e_1_3_4_74_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41592-021-01075-w'},
{'key': 'e_1_3_4_75_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkab1226'},
{ 'key': 'e_1_3_4_76_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/cshperspect.a034728'},
{'key': 'e_1_3_4_77_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acsomega.4c01050'},
{ 'key': 'e_1_3_4_78_1',
'unstructured': 'Predicted targets of hsa-miR-1307-3p mature miRNA. Available from: '
'https://www.mirbase.org/mature/MIMAT0005951'},
{'key': 'e_1_3_4_79_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fcimb.2022.802149'},
{'key': 'e_1_3_4_80_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s00018-016-2377-9'},
{ 'key': 'e_1_3_4_81_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1371/journal.pbio.0030005'},
{'key': 'e_1_3_4_82_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41592-018-0121-0'},
{ 'key': 'e_1_3_4_83_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/0022-2836(87)90455-4'},
{'key': 'e_1_3_4_84_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2116269118'},
{'key': 'e_1_3_4_85_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jmb.2008.01.068'},
{ 'key': 'e_1_3_4_86_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/S0959-437X(99)00005-2'},
{ 'key': 'e_1_3_4_87_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/S0248-4900(03)00030-3'},
{'key': 'e_1_3_4_88_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41422-021-00581-y'},
{ 'key': 'e_1_3_4_89_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.cellin.2022.100068'},
{'key': 'e_1_3_4_90_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1261/rna.1578409'},
{'key': 'e_1_3_4_91_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-023-39091-3'},
{'key': 'e_1_3_4_92_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41594-021-00653-y'},
{'key': 'e_1_3_4_93_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acschembio.1c00324'},
{'key': 'e_1_3_4_94_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/jacs.1c03003'},
{'key': 'e_1_3_4_95_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1261/rna.080035.124'},
{'key': 'e_1_3_4_96_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-022-28603-2'},
{ 'key': 'e_1_3_4_97_1',
'doi-asserted-by': 'publisher',
'DOI': '10.3390/microorganisms10081552'},
{'key': 'e_1_3_4_98_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jbc.2021.100416'},
{'key': 'e_1_3_4_99_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41573-021-00162-z'},
{'key': 'e_1_3_4_100_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41573-020-0075-7'},
{'key': 'e_1_3_4_101_1', 'doi-asserted-by': 'publisher', 'DOI': '10.2217/epi-2020-0162'},
{'key': 'e_1_3_4_102_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2022.915202'},
{ 'key': 'e_1_3_4_103_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1371/journal.pone.0281281'},
{'key': 'e_1_3_4_104_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/anie.202105942'},
{'key': 'e_1_3_4_105_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.1111444'},
{'key': 'e_1_3_4_106_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/sj.cr.7290248'},
{'key': 'e_1_3_4_107_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ijms23052408'},
{ 'key': 'e_1_3_4_108_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.mgene.2021.100910'},
{'key': 'e_1_3_4_109_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/all.14850'},
{'key': 'e_1_3_4_110_1', 'doi-asserted-by': 'publisher', 'DOI': '10.7150/ijbs.59151'},
{'key': 'e_1_3_4_111_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v13102030'},
{ 'key': 'e_1_3_4_112_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.ymthe.2021.05.004'},
{'key': 'e_1_3_4_113_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/cbdd.13978'},
{ 'key': 'e_1_3_4_114_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.gendis.2022.11.016'},
{ 'key': 'e_1_3_4_115_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.cell.2020.04.020'},
{'key': 'e_1_3_4_116_1', 'doi-asserted-by': 'publisher', 'DOI': '10.7150/thno.51479'},
{ 'key': 'e_1_3_4_117_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41467-021-24577-9'},
{ 'key': 'e_1_3_4_118_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41467-022-30546-7'},
{ 'key': 'e_1_3_4_119_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41467-022-34339-w'},
{'key': 'e_1_3_4_120_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v13040650'},
{'key': 'e_1_3_4_121_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fchem.2021.802766'},
{ 'key': 'e_1_3_4_122_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41467-022-32216-0'},
{'key': 'e_1_3_4_123_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/jac/dkaa460'},
{ 'key': 'e_1_3_4_124_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1021/acscentsci.1c01019'},
{'key': 'e_1_3_4_125_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkab1096'},
{'key': 'e_1_3_4_126_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/sciadv.abl6096'},
{ 'key': 'e_1_3_4_127_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.antiviral.2022.105478'},
{ 'key': 'e_1_3_4_128_1',
'doi-asserted-by': 'crossref',
'unstructured': 'Li Y. Structure-based design of antisense oligonucleotides that inhibit '
'SARS-CoV-2 replication. bioRxiv 2021.',
'DOI': '10.1101/2021.08.23.457434'},
{'key': 'e_1_3_4_129_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1074/jbc.AC120.013449'},
{'key': 'e_1_3_4_130_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2023051118'},
{ 'key': 'e_1_3_4_131_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.antiviral.2022.105452'},
{ 'key': 'e_1_3_4_132_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1021/acsmedchemlett.3c00051'},
{ 'key': 'e_1_3_4_133_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1021/acscentsci.0c00984'},
{ 'key': 'e_1_3_4_134_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.bbrc.2021.01.013'},
{'key': 'e_1_3_4_135_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.00663-21'},
{'key': 'e_1_3_4_136_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/D1CB00172H'},
{'key': 'e_1_3_4_137_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ijms24021232'},
{'key': 'e_1_3_4_138_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nrm.2017.103'},
{'key': 'e_1_3_4_139_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/wrna.1126'},
{ 'key': 'e_1_3_4_140_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.virol.2004.11.038'},
{'key': 'e_1_3_4_141_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ijms241713500'},
{'key': 'e_1_3_4_142_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/jvi.00635-23'},
{'key': 'e_1_3_4_143_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/1743-422X-10-132'}],
'container-title': 'RNA Biology',
'original-title': [],
'language': 'en',
'link': [ { 'URL': 'https://www.tandfonline.com/doi/pdf/10.1080/15476286.2024.2433830',
'content-type': 'unspecified',
'content-version': 'vor',
'intended-application': 'similarity-checking'}],
'deposited': { 'date-parts': [[2024, 12, 12]],
'date-time': '2024-12-12T14:41:42Z',
'timestamp': 1734014502000},
'score': 1,
'resource': {'primary': {'URL': 'https://www.tandfonline.com/doi/full/10.1080/15476286.2024.2433830'}},
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2024, 12, 4]]},
'references-count': 142,
'journal-issue': {'issue': '1', 'published-print': {'date-parts': [[2024, 12, 31]]}},
'alternative-id': ['10.1080/15476286.2024.2433830'],
'URL': 'http://dx.doi.org/10.1080/15476286.2024.2433830',
'relation': {},
'ISSN': ['1547-6286', '1555-8584'],
'subject': [],
'container-title-short': 'RNA Biology',
'published': {'date-parts': [[2024, 12, 4]]},
'assertion': [ { 'value': 'The publishing and review policy for this title is described in its Aims & '
'Scope.',
'order': 1,
'name': 'peerreview_statement',
'label': 'Peer Review Statement'},
{ 'value': 'http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=krnb20',
'URL': 'http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=krnb20',
'order': 2,
'name': 'aims_and_scope_url',
'label': 'Aim & Scope'},
{ 'value': '2024-11-16',
'order': 1,
'name': 'revised',
'label': 'Revised',
'group': {'name': 'publication_history', 'label': 'Publication History'}},
{ 'value': '2024-11-19',
'order': 2,
'name': 'accepted',
'label': 'Accepted',
'group': {'name': 'publication_history', 'label': 'Publication History'}},
{ 'value': '2024-12-04',
'order': 3,
'name': 'published',
'label': 'Published',
'group': {'name': 'publication_history', 'label': 'Publication History'}}]}