Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All molnupiravir studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchMolnupiravirMolnupiravir (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   All Outcomes       

A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes

Sanderson et al., Nature, doi:10.1038/s41586-023-06649-6
Sep 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Identification of SARS-CoV-2 variants created by molnupiravir treatment, including cases of onwards transmission. Authors find a class of long phylogenetic branches almost exclusively matching the time period, location, and age groups of widespread molnupiravir treatment. There were extreme cases with >100 molnupiravir-associated mutations, and confirmed cases where molnupiravir-derived sequences were transmitted to others. For more discussion see1.
Potential risks include the creation of dangerous variants, and mutagenicity, carcinogenicity, teratogenicity, and embryotoxicity2-11. Multiple analyses have identified variants potentially created by molnupiravir12-15.
Sanderson et al., 25 Sep 2023, peer-reviewed, 7 authors. Contact: theo.sanderson@crick.ac.uk (corresponding author), cr628@cam.ac.uk.
This PaperMolnupiravirAll
Identification of a molnupiravir-associated mutational signature in SARS-CoV-2 sequencing databases
Theo Sanderson, Ryan Hisner, I’ah Donovan-Banfield, Thomas Peacock, Christopher Ruis
doi:10.1101/2023.01.26.23284998
Molnupiravir, an antiviral medication that has been widely used against SARS-CoV-2, acts by inducing mutations in the virus genome during replication. Most random mutations are likely to be deleterious to the virus, and many will be lethal. Molnupiravirinduced elevated mutation rates have been shown to decrease viral load in animal models. However, it is possible that some patients treated with molnupiravir might not fully clear SARS-CoV-2 infections, with the potential for onward transmission of molnupiravir-mutated viruses. We set out to systematically investigate global sequencing databases for a signature of molnupiravir mutagenesis. We find that a specific class of long phylogenetic branches appear almost exclusively in sequences from 2022, after the introduction of molnupiravir treatment, and in countries and agegroups with widespread usage of the drug. We calculate a mutational spectrum from the AGILE placebo-controlled clinical trial of molnupiravir and show that its signature, with elevated G-to-A and C-to-T rates, largely corresponds to the mutational spectrum seen in these long branches. Our data suggest a signature of molnupiravir mutagenesis can be seen in global sequencing databases, in some cases with onwards transmission.
AUTHOR CONTRIBUTIONS RH identified initial branches, and their likely connection to molnupiravir. TS performed analyses of mutation-annotated tree and global metadata. CR performed all mutational spectra analyses. ID-B created bioinformatic pipelines for the AGILE trial data. All authors participated in mansuscript writing. Supplementary Information T Figure S1. Possible outcomes from MTP incorporation This figure depicts some of the mutational pathways related to MTP incorporation into MTP. The first column shows what may be a common event, but is not detectable by sequencing. MTP can be incorporated into RNA (pairing with G) and then pair with G again in the next round of synthesis, which will result in no mutation in the final sequence. However if the MTP takes on an alternative tautomeric form after incorporation it can bind to A, creating a G-to-A mutation. The third column shows that if the positive-sense base is C, then this will bind to a G in the formation of the negative-sense genome. In subsequent replication this negative sense genome can undergo the same G-to-A mutation seen in the second column, which ultimately results in a positive sense C-to-T mutation. Although the biases of tautomeric forms for the free and incorporated MTP nucleotides appear to favour these directionalities of mutations, the reverse is also possible, resulting in A-to-G and T-to-C mutations. Figure S2. High G-to-A branches involve the same number of mutations occurring in a..
References
Aksamentov, Roemer, Hodcroft, Neher, Nextclade: clade assignment, mutation calling and quality control for viral genomes, Journal of Open Source Software
Bernal, Gomes Da Silva, Musungaie, Kovalchuk, Gonzalez et al., Molnupiravir for oral treatment of covid-19 in nonhospitalized patients, N. Engl. J. Med
Bloom, Beichman, Neher, Harris, Evolution of the SARS-CoV-2 mutational spectrum
Butler, Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): an open-label, platform-adaptive randomised controlled trial, Lancet
Carabelli, Peacock, Thorne, Harvey, Hughes et al., Sars-CoV-2 variant biology: immune escape, transmission and fitness, Nature Reviews Microbiology
Cochrane, Karsch-Mizrachi, Nakamura, and on behalf of the International Nucleotide Sequence Database Collaboration
Donovan-Banfield, Penrice-Randal, Goldswain, Rzeszutek, Pilgrim et al., Characterisation of SARS-CoV-2 genomic variation in response to molnupiravir treatment in the AGILE Phase IIa clinical trial, Nat Commun
Eigen, Selforganization of matter and the evolution of biological macromolecules, Naturwissenschaften
Elbe, Buckland-Merrett, Data, disease and diplomacy: GISAID's innovative contribution to global health, Glob Chall
Extance, Covid-19: What is the evidence for the antiviral molnupiravir?, BMJ
Fountain-Jones, Vanhaeften, Williamson, Maskell, Chua et al., Antiviral treatments lead to the rapid accrual of hundreds of SARS-CoV-2 mutations in immunocompromised patients
Gold, Kelleher, Magid, Jackson, Pennini et al., Dispensing of Oral Antiviral Drugs for Treatment of COVID-19 by Zip Code-Level Social Vulnerability -United States, MMWR Morb Mortal Wkly Rep
Gordon, Tchesnokov, Schinazi, Götte, Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template
Hadfield, Megill, Bell, Huddleston, Potter et al., Nextstrain: real-time tracking of pathogen evolution, Bioinformatics
Harari, Tahor, Rutsinsky, Meijer, Miller et al., Drivers of adaptive evolution during chronic SARS-CoV-2 infections, Nat Med
Hill, Du Plessis, Peacock, Aggarwal, Colquhoun et al., The origins and molecular evolution of SARS-CoV-2 lineage B.1.1.7 in the UK, Virus Evol
Hisner, Re, Potential BA.2.3 sublineage with many mutations (singleton, Indonesia
Khoo, Fitzgerald, Saunders, Middleton, Ahmad et al., Molnupiravir versus placebo in unvaccinated and vaccinated patients with early SARS-CoV-2 infection in the UK (AGILE CST-2): a randomised, placebo-controlled, double-blind, phase 2 trial, Lancet Infect Dis
Malone, Campbell, Molnupiravir: coding for catastrophe, Nat Struct Mol Biol
Masone, Alvarez, Polo, The SARS-CoV-2 mutation landscape is shaped before replication starts
Mcbroome, Thornlow, Hinrichs, Kramer, De Maio et al., A Daily-Updated database and tools for comprehensive SARS-CoV-2 Mutation-Annotated trees, Mol. Biol. Evol
Minh, Schmidt, Chernomor, Schrempf, Woodhams et al., Iq-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era, Molecular Biology and Evolution
Nice Guidance, NICE recommends 3 treatments for COVID-19
Rambaut, Figtree, None
Rambaut, Loman, Pybus, Barclay, Barrett et al., Preliminary genomic characterisation of an emergent sars-cov-2 lineage in the uk defined by a novel set of spike mutations
Reuters ; Rosenke, Hansen, Schwarz, Feldmann, Haddock et al., Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the syrian hamster model, Nat. Commun
Ruis, Peacock, Polo, Masone, Alvarez et al., Mutational spectra distinguish SARS-CoV-2 replication niches
Sagulenko, Puller, Neher, Treetime: Maximum-likelihood phylodynamic analysis, Virus evolution
Sanderson, Biorxiv, None
Sanderson, Taxonium, Spencer, a web-based tool for exploring large phylogenetic trees
Summers, Litwin, Examining the theory of error catastrophe, J. Virol
Telenti, Hodcroft, Robertson, The evolution and biology of SARS-CoV-2 variants, Cold Spring Harbor Perspectives in Medicine
Tonkin-Hill, Martincorena, Amato, Lawson, Gerstung et al., Patterns of within-host genetic diversity in SARS-CoV-2
Turakhia, Thornlow, Hinrichs, De Maio, Gozashti et al., Ultrafast Sample placement on Existing tRees (UShER) enables real-time phylogenetics for the SARS-CoV-2 pandemic, Nat Genet
Viana, Moyo, Amoako, Tegally, Scheepers et al., Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa, Nature
Wirth, Duchene, Gisaidr, None, doi:10.5281/zenodo.6474693
{ 'indexed': {'date-parts': [[2023, 9, 26]], 'date-time': '2023-09-26T05:53:25Z', 'timestamp': 1695707605157}, 'reference-count': 0, 'publisher': 'Springer Science and Business Media LLC', 'license': [ { 'start': { 'date-parts': [[2023, 9, 25]], 'date-time': '2023-09-25T00:00:00Z', 'timestamp': 1695600000000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.springernature.com/gp/researchers/text-and-data-mining'}, { 'start': { 'date-parts': [[2023, 9, 25]], 'date-time': '2023-09-25T00:00:00Z', 'timestamp': 1695600000000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://www.springernature.com/gp/researchers/text-and-data-mining'}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'DOI': '10.1038/s41586-023-06649-6', 'type': 'journal-article', 'created': {'date-parts': [[2023, 9, 25]], 'date-time': '2023-09-25T16:05:02Z', 'timestamp': 1695657902000}, 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes', 'prefix': '10.1038', 'author': [ { 'ORCID': 'http://orcid.org/0000-0003-4177-2851', 'authenticated-orcid': False, 'given': 'Theo', 'family': 'Sanderson', 'sequence': 'first', 'affiliation': []}, {'given': 'Ryan', 'family': 'Hisner', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-5124-2427', 'authenticated-orcid': False, 'given': 'I’ah', 'family': 'Donovan-Banfield', 'sequence': 'additional', 'affiliation': []}, {'given': 'Hassan', 'family': 'Hartman', 'sequence': 'additional', 'affiliation': []}, {'given': 'Alessandra', 'family': 'Løchen', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-7077-2928', 'authenticated-orcid': False, 'given': 'Thomas P.', 'family': 'Peacock', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-0977-5534', 'authenticated-orcid': False, 'given': 'Christopher', 'family': 'Ruis', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2023, 9, 25]]}, 'container-title': 'Nature', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.nature.com/articles/s41586-023-06649-6.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s41586-023-06649-6', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s41586-023-06649-6.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2023, 9, 25]], 'date-time': '2023-09-25T16:12:21Z', 'timestamp': 1695658341000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.nature.com/articles/s41586-023-06649-6'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 9, 25]]}, 'references-count': 0, 'alternative-id': ['6649'], 'URL': 'http://dx.doi.org/10.1038/s41586-023-06649-6', 'relation': {}, 'ISSN': ['0028-0836', '1476-4687'], 'subject': ['Multidisciplinary'], 'container-title-short': 'Nature', 'published': {'date-parts': [[2023, 9, 25]]}, 'assertion': [ { 'value': '27 January 2023', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '15 September 2023', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '25 September 2023', 'order': 3, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}]}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit