Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All quercetin studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Quercetin in the Prevention and Treatment of Coronavirus Infections: A Focus on SARS-CoV-2

Gasmi et al., Pharmaceuticals, doi:10.3390/ph15091049
Aug 2022  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
22nd treatment shown to reduce risk in July 2021
 
*, now known with p = 0.0031 from 11 studies.
No treatment is 100% effective. Protocols combine complementary and synergistic treatments. * >10% efficacy in meta analysis with ≥3 clinical studies.
4,000+ studies for 60+ treatments. c19early.org
Review of the potential benefits of quercetin for COVID-19, including inhibitory effects on several stages of the viral life cycle, antioxidant, anti-inflammatory, and immunomodulatory effects, and synergistic effects with other treatments.
Reviews covering quercetin for COVID-19 include Agrawal, Biancatelli, Chen, Derosa, Dinda, Gasmi, Georgiou, Imran, Massimo Magro, Matías-Pérez, Mirza, Rizky, Shorobi, Vajdi, Yong.
Gasmi et al., 25 Aug 2022, peer-reviewed, 9 authors. Contact: bjorklund@conem.org (corresponding author).
This PaperQuercetinAll
Quercetin in the Prevention and Treatment of Coronavirus Infections: A Focus on SARS-CoV-2
Amin Gasmi, Pavan Kumar Mujawdiya, Roman Lysiuk, Mariia Shanaida, Massimiliano Peana, Asma Gasmi Benahmed, Nataliya Beley, Nadiia Kovalska, Geir Bjørklund
Pharmaceuticals, doi:10.3390/ph15091049
The COVID-19 outbreak seems to be the most dangerous challenge of the third millennium due to its highly contagious nature. Amongst natural molecules for COVID-19 treatment, the flavonoid molecule quercetin (QR) is currently considered one of the most promising. QR is an active agent against SARS and MERS due to its antimicrobial, antiviral, anti-inflammatory, antioxidant, and some other beneficial effects. QR may hold therapeutic potential against SARS-CoV-2 due to its inhibitory effects on several stages of the viral life cycle. In fact, QR inhibits viral entry, absorption, and penetration in the SARS-CoV virus, which might be at least partly explained by the ability of QR and its derivatives to inhibit 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro). QR is a potent immunomodulatory molecule due to its direct modulatory effects on several immune cells, cytokines, and other immune molecules. QR-based nanopreparations possess enhanced bioavailability and solubility in water. In this review, we discuss the prospects for the application of QR as a preventive and treatment agent for COVID-19. Given the multifactorial beneficial action of QR, it can be considered a very valid drug as a preventative, mitigating, and therapeutic agent of COVID-19 infection, especially in synergism with zinc, vitamins C, D, and E, and other polyphenols.
References
Adem, Eyupoglu, Sarfraz, Rasul, Ali, Identification of potent COVID-19 main protease (Mpro) inhibitors from natural polyphenols: An in silico strategy unveils a hope against CORONA, Preprints, doi:10.20944/preprints202003.0333.v1
Almeida, Borge, Piskula, Tudose, Tudoreanu et al., Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation, Compr. Rev. Food Sci. Food Saf, doi:10.1111/1541-4337.12342
Amoros, Simoes, Girre, Sauvager, Cormier, Synergistic effect of flavones and flavonols against herpes simplex virus type 1 in cell culture. Comparison with the antiviral activity of propolis, J. Nat. Prod, doi:10.1021/np50090a003
Aslam, Jahan, Rahman, Zafar, Ashraf, Synergistic interactions of polyphenols and their effect on antiradical potential, Pak. J. Pharm. Sci
Aucoin, Cooley, Saunders, Cardozo, Remy et al., The effect of quercetin on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: A rapid review, Adv. Integr. Med, doi:10.1016/j.aimed.2020.07.007
Bahun, Jukic, Oblak, Kranjc, Bajc et al., Inhibition of the SARS-CoV-2 3CL(pro) main protease by plant polyphenols, Food Chem, doi:10.1016/j.foodchem.2021.131594
Bastaminejad, Bakhtiyari, Quercetin and its relative therapeutic potential against COVID-19: A retrospective review and prospective overview, Curr. Mol. Med, doi:10.2174/1566524020999200918150630
Biancatelli, Berrill, Catravas, Marik, Quercetin, Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19), Front. Immunol, doi:10.3389/fimmu.2020.01451
Biswas, Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid, Med. Cell Longev, doi:10.1155/2016/5698931
Bjørklund, Dadar, Chirumbolo, Lysiuk, Flavonoids as detoxifying and pro-survival agents: What's new?, Food Chem. Toxicol, doi:10.1016/j.fct.2017.10.039
Chen, Li, Luo, Liu, Xu et al., Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): Structure-activity relationship studies reveal salient pharmacophore features, Bioorg. Med. Chem, doi:10.1016/j.bmc.2006.09.014
Chen, Lin, Huang, Chen, Hsieh et al., Inhibition of SARS-CoV 3C-like Protease Activity by Theaflavin-3,3'-digallate (TF3), Evid. Based Complement Alternat Med, doi:10.1093/ecam/neh081
Chiow, Phoon, Putti, Tan, Chow, Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection, Asian Pac. J. Trop. Med, doi:10.1016/j.apjtm.2015.12.002
Chirumbolo, Bjorklund, Lysiuk, Vella, Lenchyk et al., Targeting Cancer with Phytochemicals via Their Fine Tuning of the Cell Survival Signaling Pathways, Int. J. Mol. Sci, doi:10.3390/ijms19113568
Chirumbolo, The role of quercetin, flavonols and flavones in modulating inflammatory cell function, Inflamm. Allergy Drug Targets, doi:10.2174/187152810793358741
Cho, Curtis-Long, Lee, Kim, Ryu et al., Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa, Bioorg. Med. Chem, doi:10.1016/j.bmc.2013.03.027
Contreras, Priesemann, Risking further COVID-19 waves despite vaccination, Lancet Infect. Dis, doi:10.1016/S1473-3099(21)00167-5
Crisponi, Nurchi, Lachowicz, Peana, Medici et al., Chapter 18-Toxicity of Nanoparticles: Etiology and Mechanisms
David, Arulmoli, Parasuraman, Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid, Pharm. Rev, doi:10.4103/0973-7847.194044
Davis, Murphy, Carmichael, Effects of the dietary flavonoid quercetin upon performance and health, Curr. Sports Med. Rep, doi:10.1249/JSR.0b013e3181ae8959
Day, Canada, Diaz, Kroon, Mclauchlan et al., Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase, FEBS Lett
Delvecchio, Vadrucci, Cavalcanti, De Santis, Kunde et al., Polyphenol administration impairs T-cell proliferation by imprinting a distinct dendritic cell maturational profile, Eur. J. Immunol, doi:10.1002/eji.201545679
Derosa, Maffioli, D'angelo, Di Pierro, A role for quercetin in coronavirus disease 2019 (COVID-19), Phytother. Res, doi:10.1002/ptr.6887
El-Rahmanand, Suhailah, Quercetin nanoparticles: Preparation and characterization, Indian J. Drugs
Ganesan, Faris, Comstock, Wang, Nanua et al., Quercetin inhibits rhinovirus replication in vitro and in vivo, Antiviral. Res, doi:10.1016/j.antiviral.2012.03.005
Gao, Liu, Wang, Liu, Xu et al., Preparation of a chemically stable quercetin formulation using nanosuspension technology, Int. J. Pharm, doi:10.1016/j.ijpharm.2010.11.009
Garcia-Mediavilla, Crespo, Collado, Esteller, Sanchez-Campos et al., The antiinflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells, Eur. J. Pharmacol, doi:10.1016/j.ejphar.2006.11.014
Gasmi, Noor, Tippairote, Dadar, Menzel et al., Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic, Clin. Immunol, doi:10.1016/j.clim.2020.108409
Gasmi, Tippairote, Mujawdiya, Peana, Menzel et al., Micronutrients as immunomodulatory tools for COVID-19 management, Clin. Immunol, doi:10.1016/j.clim.2020.108545
Geoghegan, Tsui, Wong, Rabie, Inhibitory effect of quercetin on periodontal pathogens, Ann. R. Australas. Coll. Dent. Surg
Glinsky, Tripartite Combination of Candidate Pandemic Mitigation Agents: Vitamin D, Quercetin, and Estradiol Manifest Properties of Medicinal Agents for Targeted Mitigation of the COVID-19 Pandemic Defined by Genomics-Guided Tracing of SARS-CoV-2 Targets in Human Cells, Biomedicines, doi:10.3390/biomedicines8050129
Gonzalez-Burquez, Gonzalez-Diaz, Garcia-Tovar, Carrillo-Miranda, Soto-Zarate et al., Comparison between In Vitro Antiviral Effect of Mexican Propolis and Three Commercial Flavonoids against Canine Distemper Virus, Evid. Based Complement Alternat Med, doi:10.1155/2018/7092416
Gupta, Kumar, Gupta, Sharma, Verma et al., Reversion of Asthmatic Complications and Mast Cell Signalling Pathways in BALB/c Mice Model Using Quercetin Nanocrystals, J. Biomed. Nanotechnol, doi:10.1166/jbn.2016.2197
Halder, Mukherjee, Ghosh, Mandal, Chatterji et al., Smart PLGA nanoparticles loaded with Quercetin: Cellular uptake and in-vitro anticancer study, Mater. Today, doi:10.1016/j.matpr.2017.10.156
Han, Wang, Cai, Liu, Zhang et al., Quercetin nanoparticles with enhanced bioavailability as multifunctional agents toward amyloid induced neurotoxicity, J. Mater. Chem. B, doi:10.1039/C7TB03053C
Hashemzaei, Delarami Far, Yari, Heravi, Tabrizian et al., Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo, Oncol. Rep
Hecel, Ostrowska, Stokowa-Soltys, Watly, Dudek et al., Zinc(II)-The Overlooked Eminence Grise of Chloroquine's Fight against COVID-19?, Pharmaceuticals, doi:10.3390/ph13090228
Heeba, Mahmoud, El Hanafy, Anti-inflammatory potential of curcumin and quercetin in rats: Role of oxidative stress, heme oxygenase-1 and TNF-alpha, Toxicol. Ind. Health, doi:10.1177/0748233712462444
Hirai, Okuno, Katsuma, Arita, Tachibana et al., Characterisation of anti-Staphylococcus aureus activity of quercetin, Int. J. Food Sci. Technol, doi:10.1111/j.1365-2621.2010.02267.x
Hsu, Compounds Derived from Epigallocatechin-3-Gallate (EGCG) as a Novel Approach to the Prevention of Viral Infections, Inflamm. Allergy Drug Targets, doi:10.2174/1871528114666151022150122
Huang, Wang, Li, Ren, Zhao et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, doi:10.1016/S0140-6736(20)30183-5
Imran, Thabet, Alaqel, Alzahrani, Abida et al., The Therapeutic and Prophylactic Potential of Quercetin against COVID-19: An Outlook on the Clinical Studies, Inventive Compositions, and Patent Literature, Antioxidants, doi:10.3390/antiox11050876
Jaganathan, Mandal, Antiproliferative effects of honey and of its polyphenols: A review, J. Biomed. Biotechnol, doi:10.1155/2009/830616
Jaisinghani, Antibacterial properties of quercetin, Microbiol. Res, doi:10.4081/mr.2017.6877
Jeevanandam, Barhoum, Chan, Dufresne, Danquah, Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations, Beilstein. J. Nanotechnol, doi:10.3762/bjnano.9.98
Jo, Kim, Kim, Shin, Kim, Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors, Chem. Biol. Drug Des, doi:10.1111/cbdd.13604
Jo, Kim, Shin, Kim, Inhibition of SARS-CoV 3CL protease by flavonoids, J. Enzyme. Inhib. Med. Chem, doi:10.1080/14756366.2019.1690480
Kaihatsu, Yamabe, Ebara, Antiviral Mechanism of Action of Epigallocatechin-3-O-gallate and Its Fatty Acid Esters, Molecules, doi:10.3390/molecules23102475
Khaerunnisa, Kurniawan, Awaluddin, Suhartati, Soetjipto, Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study, Preprints, doi:10.20944/preprints202003.0226.v1
Kim, Seo, Curtis-Long, Oh, Oh et al., Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia, J. Enzyme. Inhib. Med. Chem
Kinker, Comstock, Sajjan, Quercetin: A promising treatment for the common cold, J. Anc. Dis. Prev. Remedies, doi:10.4172/2329-8731.1000111
Kuzmenko, Pavlyuchenko, Tumanovskaya, Dosenko, Moybenko, Experimental therapy of cardiac remodeling with quercetin-containing drugs, Patol. Fiziol. Eksp. Ter
Li, Yao, Han, Yang, Chaudhry et al., Inflammation and Immunity, Nutrients, doi:10.3390/nu8030167
Lin, Tsai, Tsai, Lai, Wan et al., Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds, Antiviral. Res, doi:10.1016/j.antiviral.2005.07.002
Liu, Raghuvanshi, Ceylan, Bolling, Quercetin and Its Metabolites Inhibit Recombinant Human Angiotensin-Converting Enzyme 2 (ACE2) Activity, J. Agric. Food Chem, doi:10.1021/acs.jafc.0c05064
Liu, Zhou, Li, Garner, Watkins et al., Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases, ACS Cent. Sci, doi:10.1021/acscentsci.0c00272
Lutai, Parkhomeko, Ryzhkova, Havrylenko, Irkin et al., Effects of Intravenous 5-Lipoxygenase Inhibitor Quercetin Therapy on Endothelial Function, Severity of Systemic Inflammation and Oxidative Stress in Acute ST Elevation Myocardial Infarction, Emerg. Med, doi:10.22141/2224-0586.1.72.2016.74473
Lysiuk, Hudz, Differential spectrophotometry: Application for quantification of flavonoids in herbal drugs and nutraceuticals, Int. J. Trends Food Nutr
Maturu, Wei-Liang, Androutsopoulos, Jiang, Wang et al., Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD), Food Chem. Toxicol
Mehany, Khalifa, Barakat, Althwab, Alharbi et al., Polyphenols as promising biologically active substances for preventing SARS-CoV-2: A review with research evidence and underlying mechanisms, Food Biosci, doi:10.1016/j.fbio.2021.100891
Mehrbod, Abdalla, Fotouhi, Heidarzadeh, Aro et al., Immunomodulatory properties of quercetin-3-O-alpha-L-rhamnopyranoside from Rapanea melanophloeos against influenza a virus, BMC Complement Altern. Med, doi:10.1186/s12906-018-2246-1
Mlcek, Jurikova, Skrovankova, Sochor, Quercetin and Its Anti-Allergic Immune Response, Molecules, doi:10.3390/molecules21050623
Mora, Iwata, Von Andrian, Vitamin effects on the immune system: Vitamins A and D take centre stage, Nat. Rev. Immunol, doi:10.1038/nri2378
Moran-Santibanez, Pena-Hernandez, Cruz-Suarez, Ricque-Marie, Skouta et al., Virucidal and Synergistic Activity of Polyphenol-Rich Extracts of Seaweeds against Measles Virus, Viruses, doi:10.3390/v10090465
Mostafavi-Pour, Zal, Monabati, Vessal, Protective effects of a combination of quercetin and vitamin E against cyclosporine A-induced oxidative stress and hepatotoxicity in rats, Hepatol. Res, doi:10.1111/j.1872-034X.2007.00273.x
Munafo, Donati, Brindani, Ottonello, Armirotti et al., Quercetin and luteolin are single-digit micromolar inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase, Sci. Rep, doi:10.1038/s41598-022-14664-2
Nam, Sharma, Nguyen, Chakraborty, Sharma et al., Application of Bioactive Quercetin in Oncotherapy: From Nutrition to Nanomedicine, Molecules, doi:10.3390/molecules21010108
Nayak, Hui, Barman, Assembly and budding of influenza virus, Virus Res, doi:10.1016/j.virusres.2004.08.012
Nguyen, Woo, Kang, Nguyen, Kim et al., Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris, Biotechnol. Lett, doi:10.1007/s10529-011-0845-8
Niazvand, Orazizadeh, Khorsandi, Abbaspour, Mansouri et al., Effects of Quercetin-Loaded Nanoparticles on MCF-7 Human Breast Cancer Cells, Medicina, doi:10.3390/medicina55040114
Nishimuro, Ohnishi, Sato, Ohnishi-Kameyama, Matsunaga et al., Estimated daily intake and seasonal food sources of quercetin in Japan, Nutrients, doi:10.3390/nu7042345
Ozarowski, Karpinski, Extracts and Flavonoids of Passiflora Species as Promising Anti-inflammatory and Antioxidant Substances, Curr. Pharm. Des, doi:10.2174/1381612826666200526150113
Park, Yuk, Ryu, Lim, Kim et al., Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors, J. Enzyme. Inhib. Med. Chem, doi:10.1080/14756366.2016.1265519
Parkhomenko, Kozhukhov, Lutay, Multicenter randomized clinical trial of the efficacy and safety of intravenous quercetin in patients with ST-elevation acute myocardial infarction, Eur. Heart J, doi:10.1093/eurheartj/ehy565.2152
Pashevin, Tumanovska, Dosenko, Nagibin, Gurianova et al., Antiatherogenic effect of quercetin is mediated by proteasome inhibition in the aorta and circulating leukocytes, Pharmacol. Rep
Pawar, Pal, Molecular and functional resemblance of dexamethasone and quercetin: A paradigm worth exploring in dexamethasone-nonresponsive COVID-19 patients, Phytother. Res, doi:10.1002/ptr.6886
Peng, Vitamin C Infusion for the Treatment of Severe 2019-nCoV Infected Pneumonia
Prabu, Shagirtha, Renugadevi, Quercetin in combination with vitamins (C and E) improves oxidative stress and renal injury in cadmium intoxicated rats, Eur. Rev. Med. Pharmacol. Sci
Qiu, Kroeker, He, Kozak, Audet et al., Prophylactic Efficacy of Quercetin 3-β-O-d-Glucoside against Ebola Virus Infection, Antimicrob. Agents Chemother, doi:10.1128/AAC.00307-16
Riva, Ronchi, Petrangolini, Bosisio, Allegrini, Improved Oral Absorption of Quercetin from Quercetin Phytosome(R), a New Delivery System Based on Food Grade Lecithin, Eur. J. Drug Metab. Pharmacokinet
Rogerio, Dora, Andrade, Chaves, Silva et al., Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice, Pharmacol. Res, doi:10.1016/j.phrs.2009.10.005
Rondanelli, Perna, Gasparri, Petrangolini, Allegrini et al., Promising Effects of 3-Month Period of Quercetin Phytosome((R)) Supplementation in the Prevention of Symptomatic COVID-19 Disease in Healthcare Workers: A Pilot Study, Life, doi:10.3390/life12010066
Ryu, Jeong, Kim, Kim, Park et al., Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition, Bioorg. Med. Chem, doi:10.1016/j.bmc.2010.09.035
Sagar, Rathinavel, Lutz, Struble, Khurana et al., Bromelain Inhibits SARS-CoV-2 Infection in VeroE6 Cells, Biorxiv Prepr. Serv. Biol, doi:10.1101/2020.09.16.297366
Schwarz, Sauter, Wang, Zhang, Sun et al., Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus, Planta. Med, doi:10.1055/s-0033-1360277
Seremet, Dumitrescu, Radesi, Katona, Doagă et al., Photobiomodulation of quercetin antiproliferative effects seen in human acute T leukemic Jurkat cells, Rom. J. Biophys
Shrivastava, Shrivastava, Synergistic Compositions for the Treatment of Topical Viral Infections, U.S. Patent No
Shysh, Pashevin, Dosenko, Moibenko, Correction of lipid peroxidation and antioxidant system disorders by bioflavonoids during modeling of cholesterol atherosclerosis in rabbits, Fiziol. Zh, doi:10.15407/fz57.02.019
Siriwong, Teethaisong, Thumanu, Dunkhunthod, Eumkeb, The synergy and mode of action of quercetin plus amoxicillin against amoxicillin-resistant Staphylococcus epidermidis, BMC Pharmacol. Toxicol, doi:10.1186/s40360-016-0083-8
Stanek, Kafarski, Jasicka-Misiak, Development of a high performance thin layer chromatography method for the rapid qualification and quantification of phenolic compounds and abscisic acid in honeys, J. Chromatogr. A
Sternberg, Chadha, Lieberman, Hojnacki, Drake et al., Quercetin and interferon-β modulate immune response(s) in peripheral blood mononuclear cells isolated from multiple sclerosis patients, J. Neuroimmunol, doi:10.1016/j.jneuroim.2008.09.008
Tang, Deng, Zhou, Li, Ge et al., Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects, Biomed. Pharm, doi:10.1016/j.biopha.2019.109604
Tao, Yang, Shi, Xue, Yang et al., Complementary and alternative medicine is expected to make greater contribution in controlling the prevalence of influenza, Biosci. Trends, doi:10.5582/bst.2013.v7.5.253
Ubani, Agwom, Shehu, Luka, Umera et al., Molecular Docking Analysis of Some Phytochemicals on Two Sars-CoV-2 Targets, BioRxiv, doi:10.1101/2020.03.31.017657
Ul Qamar, Alqahtani, Alamri, Chen, Structural basis of SARS-CoV-2 3CL(pro) and anti-COVID-19 drug discovery from medicinal plants, J. Pharm. Anal, doi:10.1016/j.jpha.2020.03.009
Valentova, Sima, Rybkova, Krizan, Malachova et al., Anti)mutagenic and immunomodulatory properties of quercetin glycosides, J. Sci. Food Agric, doi:10.1002/jsfa.7251
Verna, Liso, Cavalcanti, Bianco, Di Sarno et al., Quercetin Administration Suppresses the Cytokine Storm in Myeloid and Plasmacytoid Dendritic Cells, Int. J. Mol. Sci, doi:10.3390/ijms22158349
Wang, Wang, Ye, Liu, Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence, Int. J. Antimicrob. Agents, doi:10.1016/j.ijantimicag.2020.105948
Wang, Yao, Zhou, Yang, Chaudry et al., Bacteriostatic Effect of Quercetin as an Antibiotic Alternative In Vivo and Its Antibacterial Mechanism In Vitro, J. Food Prot, doi:10.4315/0362-028X.JFP-17-214
Warren, Paulhill, Davidson, Lupton, Taddeo et al., Quercetin may suppress rat aberrant crypt foci formation by suppressing inflammatory mediators that influence proliferation and apoptosis, J. Nutr, doi:10.3945/jn.108.096271
Wong, He, Siragam, Bi, Mbikay et al., Antiviral activity of quercetin-3-β-O-D-glucoside against Zika virus infection, Virol. Sin, doi:10.1007/s12250-017-4057-9
Worldmeters, COVID-19 Coronavirus Pandemic
Wu, Li, Li, He, Jiang et al., Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry, Viruses, doi:10.3390/v8010006
Xiao, Shi, Liu, Wang, Xie et al., Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling, PLoS ONE, doi:10.1371/journal.pone.0022934
Xu, Hu, Wang, Cui, Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application, Molecules, doi:10.3390/molecules24061123
Yahfoufi, Alsadi, Jambi, Matar, The Immunomodulatory and Anti-Inflammatory Role of Polyphenols, Nutrients, doi:10.3390/nu10111618
Yamshchikov, Desai, Blumberg, Ziegler, Tangpricha, Vitamin D for treatment and prevention of infectious diseases: A systematic review of randomized controlled trials, Endocr. Pract, doi:10.4158/EP09101.ORR
Yang, Islam, Wang, Li, Chen, Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective, Int. J. Biol. Sci, doi:10.7150/ijbs.45538
Yang, Li, Liu, Zhen, Zhang et al., Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19, Radiol. Cardiothorac. Imaging, doi:10.1148/ryct.2020200047
Yao, Xi, Hu, Gao, Cai et al., Inhibition of enterovirus 71 replication and viral 3C protease by quercetin, Virol. J, doi:10.1186/s12985-018-1023-6
Yi, Li, Yuan, Qu, Chen et al., Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells, J. Virol, doi:10.1128/JVI.78.20.11334-11339.2004
Yu, Lee, Lee, Kim, Chin et al., Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13, Bioorg. Med. Chem. Lett, doi:10.1016/j.bmcl.2012.04.081
Zhang, Evaluation of anti-fatigue and immunomodulating effects of quercetin in strenuous exercise mice, IOP Conf. Ser. Earth Environ. Sci, doi:10.1088/1755-1315/61/1/012046
Zhang, Lin, Sun, Curth, Drosten et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors, Science
Zhang, Swarts, Yin, Liu, Tian et al., Antioxidant properties of quercetin, Adv. Exp. Med. Biol, doi:10.1007/978-1-4419-7756-4_38
Zhang, Wu, Zhang, Deng, Peng, In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus, J. Integr. Med, doi:10.1016/j.joim.2020.02.005
Zheng, Deng, Liang, Chen, Guo et al., Antioxidant Activity of Quercetin and Its Glucosides from Propolis: A Theoretical Study, Sci. Rep, doi:10.1038/s41598-017-08024-8
Zhou, Hou, Shen, Huang, Martin et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, Cell Discov, doi:10.1038/s41421-020-0153-3
Zhuang, Jiang, Suzuki, Li, Xiao et al., Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection, Antiviral. Res, doi:10.1016/j.antiviral.2009.02.001
Zoroddu, Aaseth, Crisponi, Medici, Peana et al., The essential metals for humans: A brief overview, J. Inorg. Biochem, doi:10.1016/j.jinorgbio.2019.03.013
Zoroddu, Medici, Ledda, Nurchi, Lachowicz et al., Toxicity of nanoparticles, Curr. Med. Chem, doi:10.2174/0929867321666140601162314
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit